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What‘s the problem? 

§  As network infrastructure converges, more and more legacy service with strict requirements for service 
availability are migrated to the IP/MPLS network 
§  Magic number is 50ms (!) 

§  Consider an IP/MPLS network. How long will it take to reroute traffic? 
§  Think about OSPF, IS-IS, LDP, RSVP, or BGP 
§  General categories: transit failure (link/node), head /tail end, edge failure 
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Global vs. Local Protection 

Global Protection 
§  P router adjacent to (egress) PE detects PE failure, and 

advertises it into IGP 
§  IGP is used to propagate failure notification to other 

(ingress) PEs 
§  Using OSPF/ISIS flooding procedures, connectivity recovery 

depends on propagating failure notification 
§  Connectivity recovery time can not be less than the time it 

takes to propagate and process failure notification in ISIS/
OSPF 

§  Other (ingress) PEs adjust their forwarding tables, once they 
receive the failure notification via ISIS/OSPF 

§  Propagation time involves control plane processing delay on 
all the intermediate nodes 

§  Requires signaling to take place, i.e.. restoration time: 
several 100s of msec 

Local Protection 
§  P router adjacent to (egress) PE detects PE failure 
§  P router adjacent to PE adjusts its forwarding table 

§  P router becomes Point of Local Repair (PLR) 
§  Connectivity recovery does not depend on propagating failure 

notification in ISIS/OSPF 
§  Connectivity recovery time does not depend on ISIS/OSPF 

propagating and processing failure notification all the way to 
the ingress PEs 

§  Connectivity recovery time can be comparable to the time it 
takes for PLR to detect PE failure 

§  Based on pre-computed local backup, i.e. restoration in 
sub-50 msec 

Local protection is the fastest and the most scalable way to provide connectivity recovery! 
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Router event propagation 

§  Example: Link down event 
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MPLS Fast Reroute (FRR) – RFC 4090 

§  Let‘s have a look at an RSVP-signaled MPLS LSP. Consider a failure somewhere in the network! 
§  Node which discovers failure send ResvTear message towards ingress LSR 
§  Ingress LSR re-computes LSP and sends Path messages towards the egress LSR 
§  Ingress eventually receives Resv message and maps traffic to new LSP 

§  That won‘t happen in 50ms! Can we speed up the process? 
§  MPLS Fast Reroute (FRR) mechanism offers a short-term solution by pre-computing and pre-installing 

alternate path using detour/bypass LSPs at point of local repair (PLR)  
§  Offers link and node protection 
§  Option to have one-to-one or facility backup paths 
§  Requires RSVP-TE signaling 

§  Introducing RSVP-signaling to get FRR increases the amount of complexity/states in the network (lot of 
configuration necessary, huge amount of RSVP states and signaling) 
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MPLS Fast Reroute (FRR) – after a failure… 

§  Additional control plane action: 
§  Suppression of LSP teardown 

►  LSP Head end receives IGP notifications about the failure of the link 
►  suppress error generation that would lead to the teardown of the LSP 

§  Notification of the LSP head end 
►  PLR protect traffic while LSP head end looks for an alternative path 
►  PLR takes care of notifying the head end using an RSVP Path Error 
-  Including a “Notify” error code “Tunnel locally repaired” subcode 
-  Additional flag is turned on in RRO (route record object) 

§  New Path computation and signaling 
►  Head end recomputes LSP, avoiding failed link 
►  Set in make-before-break fashion 
►  shared explicit is always used for local protection 
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MPLS FRR Explained – Facility backup 

§  Concept of label stacking is used by PLR (LSP hierarchy) 
§  LSR at head end of detour LSPs receives packet identical to the one it would have received on original link (note, 

that labels have per platform scope) 
§  In case of link protection, next-hop bypass LSP will be created 
§  In case of node protection, next-next-hop bypass LSP will be created  
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MPLS FRR Explained – one-to-one backup 

§  one-to-one backup requires installing new forwarding states at both PLR and MP 
§  amount of states increases proportionally to the number of LSPs protected 
§  no need to increase the label stack 
§  tighter control over backup tunnel and its properties 
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MPLS FRR One-to-One vs Multiple-to-One Backup 

§  One-to-one backup 
§  One dedicated detour LSP protecting one LSP 
§  Best suited if path selection criteria such as 

bandwidth, priority and link coloring are critical 

  Multiple-to-one (facility) backup  
§  One bypass LSP protecting multiple LSPs at the 

same time 
§  Improves scalability 
§  MP is nexthop node or nexthop's nexthop node 

[edit protocols] 
rsvp { 
    interface xe-0/0/0 { 
        link-protection; 
    } 
} 
mpls { 
    label-switched-path Example { 
        … 
        link-protection|node-link-protection;  
    } 
} 

[edit protocols] 
mpls { 
    label-switched-path Example { 
        … 
        fast-reroute;  
    } 
} 
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Fate Sharing 

§  What happens if primary and secondary LSPs are 
running across common infrastructure, e.g. 
DWDM equipment, switches, etc.? 

§  Fate sharing allows grouping of elements with 
common properties 
§  Groups are configured with costs 
§  These costs are added to CSPF metric when 

calculating secondary path 
§  Effectively requires standby configuration 

[edit routing-options fate-sharing] 
group PoP1_to_PoP2 { 
    cost 1000; 
    from R11 to R21; 
    from R12 to R22; 
} 
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Shared Link Risk Groups (SLRG) 

§  Fate sharing requires configuration on each 
individual devices 
§  No protocol available exchanging database 

information 
§  Inconsistency due to misconfiguration 

§  Shared Link Risk Group (SLRG) uses standard-
based approach to distribute fate sharing 
information via IGP TE extensions 
§  Requires traffic engineering 
§  Support for OSPF (via RFC 4203) and IS-IS (RFC 

5307) 
§  Introduced in JUNOS 11.4   

[edit routing-options] 
srlg { 
    PoP1_to_PoP2 { 
        srlg-cost 1000; 
        srlg-value 122; 
    } 
} 
 
[edit protocols mpls] 
interface xe-0/0/0 { 
    srlg PoP1_to_PoP2; 
} 
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Loop-Free Alternates (LFA) 

§  How to improve convergence without RSVP-signaling? 
§  Remember, IGP only calculates best path between source/destination pairs  

§  No reason why equal-cost multipath (ECMP) routes cannot be used for local repair 
§  No reason why less than equal cost routes canot be used as long as no forwarding loop is created! 

§  Loop-Free Alternates (sometimes known as IP Fast Reroute) is described in RFC 5286 , RFC 6571 and 
uses a simple constraint to avoid loop forwarding 
§  For a local router R, a neighbor N can provide a LFA for destination X if and only if 

metric(N, X) < metric(R, X) + metric(R, N) 
§  LFA is based on IGP information only and provides rerouting capabilities for native IP traffic as well as MPLS traffic 

(with LDP) 
§  LFA is a local decision and does not require any interaction with neighboring routers 

§  Add a non-best path for backup purpose, but how 
§  Shared, common link state database 
§  Place the SPF root at your neighbors 
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Loop-Free Alternates Example 

§  Look at ingress router R1‘s routing table 
§  R5 reachable via R3 with cost of 20 
§  R6 reachable via R3 with cost of 20 

§  Consider link failure between router R1 and R3! 
§  There exists an LFA for destination R6 via R2 

because  
[metric(R2->R6)=20] <  
[metric(R1->R2)+metric(R1->R6)=30] 

§  There is no LFA for destination R5 because 
[metric(R2->R3)=30] =  
[metric(R1->R2)+metric(R1->R5)=30]  

[edit protocols isis] 
interface all { 
    link-protection|node-link-protection; 
} 
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Remote LFA 

§  LFA provides good repair coverage in many topologies, 
especially if highly meshed.  
§  However, some topologies (e.g. rings) are not well protected by 

LFA alone 

§  Remote LFA (rLFA) uses tunnels to provide additional logical 
links used as LFAs where none exist in the original topology 
§  P-space: set of all node reachable from source without traversing 

protected link 
§  Q-space: set of all nodes which can reach destination without 

traversing protected link 
§  Tunnel endpoint defined by intersection of P-space and Q-space 

§  Most be done on a per-prefix basis 
§  Consider traffic travelling from A to C via B 
§  Still no guarantee for 100% coverage 
§  Hard to achieve node protection 
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Remote LFA – Case IP Packet 

§  In the case of IP traffic being protected, A pushes the LDP label required to reach E on top of the IP 
packet. 

§  Using Existing LDP LSP to E 

§  Assuming PHP, packet arrives at E as a plain IP packet. 
E then forwards the packet to D, as this is on the best path 
towards the destination, C. 
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Remote LFA – Case MPLS (LDP) Packet 

§  In the case of LDP traffic being protected, a stack consisting of two LDP labels is 
used by A, i.e. “LDP over LDP”. 

§  The outer LDP label, is the label required to reach RE. 

§  The inner LDP label,  is the label required to reach C from E. 

§  A targeted LDP session (automatically created) is needed 
between A and E, so that A can learn the label, advertised 
by E to reach C. 
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Difficulty of Attaining full coverage with LFA 

§  Difficult to reach 100% coverage without caveats 

 

§  The closer we get to 100%, the more difficult is it to make 
further improvements 

§  Fundamental problem is that we are trying to „fight“ against 
the IGP metrics. 
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Coverage Extension using dynamic RSVP LSP 

§  An RSVP bypass LSP is automatically created 
§  RSVP LSP goes all the way to the node on the far side of the protected link 

§  From Egress Node of the LSP the packet then travels to ist original destination 

§  LFA + RSVP for full coverage 
§  The advantages of the scheme are simplicity and full coverage. 

 

 [edit protocols ldp] 
interface all { 
    link-protection { 

 dynamic-rsvp-lsp; 
    } 
} 
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Segment Routing Goals 

§  Simplicity and Scale 
§  Operators want to reduce number of protocols use to simplify network architecture and ease troubleshooting 

§  Need to have Fast Reroute capability for any topology without explicit configuration of thousands of RSVP tunnels 

§  Leverage all existing services supported over MPLS networks today 

►  Source routing, Fast Reroute, VPNv4/6, VPLS, L2VPN 

§  Avoid #millions of labels, tunnels and TE LSPs 

§  Application Centric Networking 
§  Allow Applications to influence forwarding decisions in a scalable way 

§  Provide programmatic interfaces and orchestration 

§  Two main concepts 
§  put label advertisement into IGP 

§  Forwarding based on a label stack 
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Segment Routing Overview – focus on MPLS dataplane 
§  New approach standardized in the IETF 

§  draft-filsfils-spring-segment-routing-04 
§  draft-filsfils-spring-segment-routing-use-cases-01 
§  draft-filsfils-spring-segment-routing-mpls-03 

§  Forwarding state (aka segment) is established by IGP (either OSPF or IS-IS) 
§  No need to run LDP or RSVP-TE as a control plane protocol 
§  Existing MPLS data plane remains without any modification RFC 3031 

►  push, swap and pop 
►  segment = label 

§  A segment identifies respective can represent any instruction 
§  Service 
§  Context 
§  Locator 
§  IGP-based forwarding construct 
§  BGP-based forwarding construct 
§  Local value or Global Index 

§  the source chooses a path and encodes it in the packet header as an ordered list of segments. 
§  Per flow state only at ingress SR Domain edge node 

§  Ingress edge node pushes the segment list on the packet 

Segment = Instruction 
„use shortest path to reach R8“ 
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IGP Segment IDENTIFIERS.   

§  Node SID 
§  prefix that identifies a specific node (e.g. the prefix is its loopback) 
§  R1 lo0 1.2.3.4/32 (Node-SID: 201) 
§  Global Label Allocation indicating SPT to advertising Node (special Prefix SID) 

§  Adjacency SID 
§  Local Label Allocation indicating a link (or set of links) within the IGP topology 
§  Local segment related to a specific SR node 

§  Prefix SID 
§  Local Label Allocation indicating a IGP “leaf” IP prefix (attached node) 
§  2.2.2.2/32 (Prefix--‐SID: 2222) 

§  SR Global Block 
§  SRGB is the set of local labels reserved for global segments 
§  All the global segments must be allocated from SRGB 
§  Operator manages SRGB like an IP address block: it ensures unique allocation of a global segment within the SR domain 
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IGP Prefix or Node Segment 

§  Each router gets one unique label from SR range, router R8 gets 208 
§  Router R8 advertises its global prefix segment 208 with his loopback address 

§  ISIS sub-TLV extension (draft-previdi-isis-segment-routing-extensions-01) 
§  OSPF opaque sub-TLV extension (draft-psenak-ospf-segment-routing-extensions-01) 

§  All remote routers install the prefix segment to R8 in the MPLS data plane along the shortest path to R8/32 
§  Packet injected anywhere with active segment 208 will reach router R8 via ECMP-aware shortest path 
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208

R1
swap 208 -> 208 
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IGP Adjacency Segment 

§  Router R5 allocates a local segment 524 for its adjacency R5-R4 and advertises the segment in IGP 
§  ISIS sub-TLV extension (draft-previdi-isis-segment-routing-extensions-01) 
§  OSPF opaque sub-TLV extension (draft-psenak-ospf-segment-routing-extensions-01) 

§  R5 is the only node to install the adjacency segment in the MPLS dataplane 
§  Packet injected at node R5 with active segment 524 is forced through link R5->R4 
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Example: Explicit Path using Adjacency Segments 

§  Segment Routing provides path control for the entire label switched path 
§  Source routing along any explicit path 

§  stack of adjacency labels 
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Example: Explicit Path Combining Node & Adj Segments 

§  Any path can be expressed using a combination of IGP prefix (node) segments and adjacency segments 
§  Excellent Scale: a node installs N+A FIB entries (N node segments and A adjacency segments)  
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Domain-Wide Labels 

§  Segment routing draft requires IGP prefix segments to be globally unique (at least for the node segments) 
§  According to RFC5031, MPLS labels only have local significance 
§  Introduction of global labels requires significant change of MPLS architecture 

►  Today identical labels can co-exist in routing domain 
►  Most devices have configurable label-ranges per protocol  
►  Interoperability with routers which do not support segment routing 
►  Re-use label block semantic used in BGP-based VPLS (RFC 4761) 

§  Assign each router a domain-wide unique ID  
§  ID is an index to locate the actual label value, inside label block  
§  Each LSR allocates and advertises a block of locally significant labels  
§  The block should be large enough to accommodate the range of assigned IDs 
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Label Range Index and LFIB Construction 
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Segment Routing Use Case: CoS-based Routing 

§  Routing based on service requirements 
§  Use direct Asia-Europe path with low latency (expensive) 
§  Use path via America with higher latency but reduced costs 
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Use Case SDN: Self Destructive Networks ;-) 

§  The heart of the application of SR to the SDN use-case lies in the SDN controller, also called Stateful PCE 

§  The controller abstracts the network topology and traffic matrix  (BGP-LS) 

§  An SDN Controller (SC) is connected to the network and is able to retrieve the topology and traffic 
information, as well as set traffic-engineering policies on the network nodes. 

§  Controller-based Computation 
§  Support any other constraint: latency, disjointness 

§  SDN-centric: application-based network programmability 
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Questions? 

§  Life, the universe, and everything 

§  Further Reading: 
§  http://www.segment-routing.net/ 

§  http://www.juniper.net/us/en/homepage-campaign.page 

§  https://ripe66.ripe.net/presentations/232-SR_RIPE_v2.pdf 

§  https://www.ietf.org/ 

 

 

 


