

Akamai CDN, IPv6 and DNS security

Christian Kaufmann Akamai Technologies DENOG 5 14th November 2013

Agenda

Akamai Introduction

- Who's Akamai?
- Intelligent Platform & Traffic Snapshot

Basic Technology

- Akamai mapping
- Finding the IP address
- Downloading <u>www.example.com</u>

Akamai & IPv6 World Launch Anniversary

Akamai IPv6 Deployment and Observations

Secure the Internet

- Open recursors and reflection attacks
- BCP-38 and DNS server maintenance

Akamai Introduction

The Akamai Intelligent Platform

The world's largest on-demand, distributed computing platform delivers all forms of web content and applications

The Akamai Intelligent Platform:

140,000+Servers

2,000+ Locations **1,100+** Networks

700+ Cities

83 Countries

Typical daily traffic:

- More than 2 trillion requests served
- Delivering over 21 terabits/second
- 15-30% of all daily web traffic

Basic Technology

Akamai mapping

How CDNs Work

When content is requested from CDNs, the user is directed to the optimal server

- This is usually done through the DNS, especially for non-network CDNs, e.g. Akamai
- It can be done through anycasting for network owned CDNs

Users who query DNS-based CDNs be returned different A (and AAAA) records for the same hostname

This is called "mapping"

The better the mapping, the better the CDN

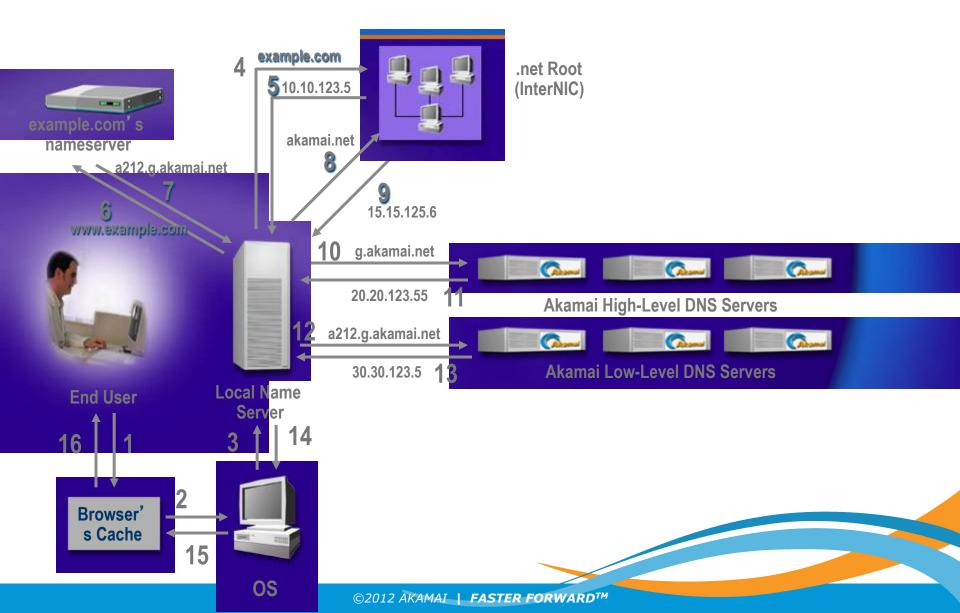
How Akamai CDN Work

Example of Akamai mapping

Notice the different A records for different locations:

```
[NYC]% host www.symantec.com
                   CNAME
                         e5211.b.akamaiedge.net.
www.symantec.com
e5211.b.akamaiedge.net.
                                207.40.194.46
                        Α
                               207.40.194.49
e5211.b.akamaiedge.net.
                       A
[Boston]% host www.symantec.com
                   CNAME e5211.b.akamaiedge.net.
www.symantec.com
                       Α
                                81.23.243.152
e5211.b.akamaiedge.net.
                               81.23.243.145
e5211.b.akamaiedge.net. A
```

How Akamai CDN Work



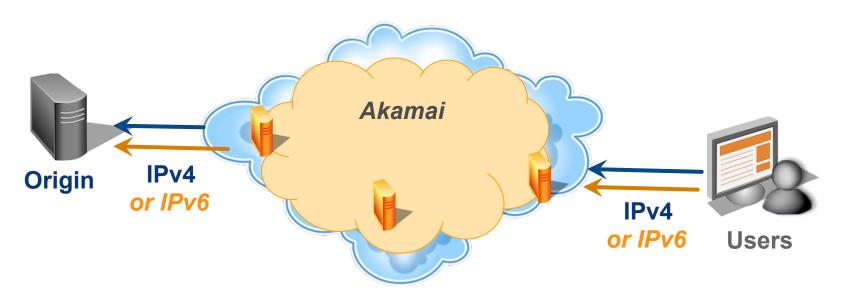
Akamai use multiple criteria to choose the optimal server

- These include standard network metrics:
 - Latency
 - Throughput
 - Packet loss
- These also include things like CPU load on the server, HD space, network utilization, etc.

Finding the IP Address: The Akamai Way

Akamai & IPv6

World IPv6 Launch Anniversary


How we enable IPv6

Dual-stacking edge servers Customer properties can be dual-stacked

- Terminate IPv4 and IPv6 connections in server software
- Can go forward to customer origin via IPv4 (or IPv6)

World IPv6 Launch Day: deployment status

In-production serving HTTP over IPv6 to users, tried to dualstack every server everywhere

As of 2012-06-06, IPv6 now live in...

- ... over 53 countries
- ... over 175 cities (in all continents except Antarctica)
- ... over 225 networks
- ... over 600 Akamai server locations
- ... over 37,000 Akamai servers

Compare to a total of 1070 networks in 83 countries

(many network providers don't have working IPv6 yet, not all networks have full IPv6 routing table)

Current deployment status

In-production serving HTTP over IPv6 to users, tried to dualstack every server everywhere

As of Jun 2013, IPv6 now live in...

- ... over 64 countries
- ... over 240 cities (in all continents except Antarctica)
- ... over 300 networks
- ... over 800 Akamai server locations
- ... over 70,000 Akamai servers

Compare to a total of 1100+ networks in 83 countries

(many network providers don't have working IPv6 yet, not all networks have full IPv6 routing table)

World IPv6 Launch Anniversary: A closer look from Akamai

IPv6 Addresses

·2011: 280,229

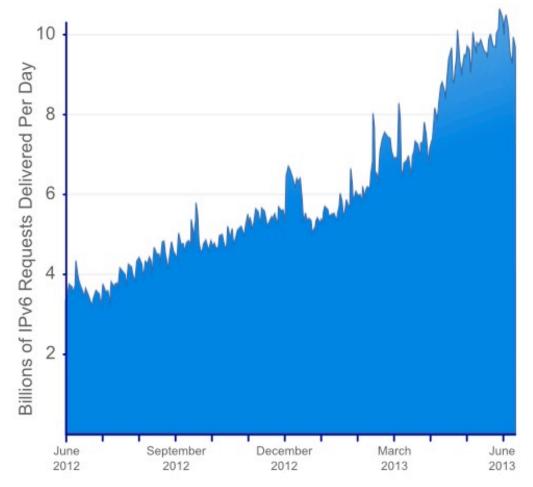
2012: 18,899,253

• 67x

•2013: 200m - 300m

• 10x

IPv6 Requests/Day


2011: 8,343,590

2012: 3,394,971,156

• 460x

•2013: >10 billions

• 2.5x

IPv6 Requests/Day on Akamai from June 2012 to June 2013

World IPv6 Launch Anniversary: Observations

Top 10 IPv6 by Geo

Country	IPv6 as % of Requests
Switzerland	10.4%
Romania	7.7%
France	4.6%
Luxembourg	3.6%
Belgium	3.3%
United States of America	3.2%
Germany	2.9%
Japan	2.1%
Peru	2.1%
Norway	1.4%

World IPv6 Launch Anniversary: Observations

Top 10 IPv6 by Network Provider

Network Operator	IPv6 as % of Requests	Primary Country
Verizon Wireless	34.9%	U.S.A.
Brutele (VOO)	29.7%	Belgium
Free/Proxad	18.9%	France
RCS & RDS	18.5%	Romania
Swisscom	15.8%	Switzerland
KDDI	9.9%	Japan
AT&T	8.4%	U.S.A.
Comcast	3.2%	U.S.A.
Deutsche Telekom AG	3.4%	Germany
Telefonica del Peru	2.6%	Peru

World IPv6 Launch Anniversary: IPv6 and Mobile

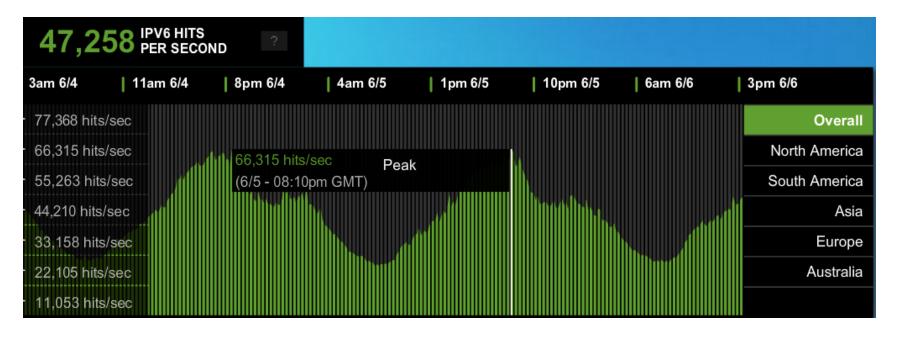
Mobile Operating System	IPv6 as % of Requests
Windows Phone OS 8	12%
BlackBerry OS 10	5.9%
Android 4.1/4.2 ("JellyBean")	10.8%
Android 4.0 ("Ice Cream Sandwich")	3.2%
Android 2.3 ("Gingerbread")	1.6%
Apple iOS 6	1.8%
Apple iOS 5	1.4%
Apple iOS 3/4	1.1%

- using Akamai's Mobile Browser Detection for categorization
- Within Android, there are individual device types where well over 50% of the traffic to dual-stacked websites arrived over IPv6.

World IPv6 Launch Anniversary: IPv6 and Desktop/Laptop Operating Systems

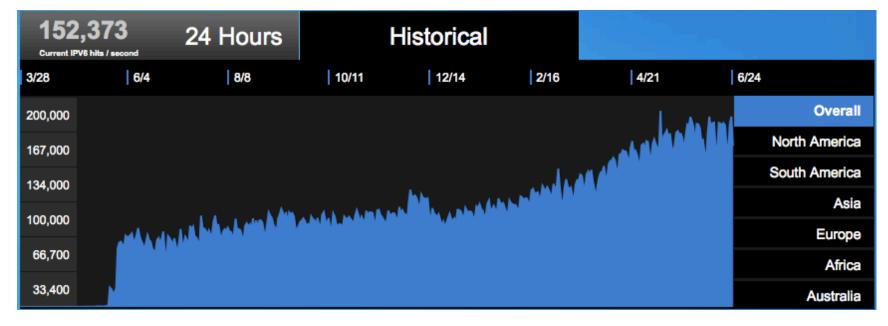
Operating System	Browser	IPv6 as % of Requests
Microsoft Windows 8		4.1%
Microsoft Windows Vista		3.3%
Microsoft Windows 7		2.5%
Microsoft Windows XP		0.5%
Mac OS X 10.5 & 10.6	Chrome & Firefox	3.4%
Mac OS X 10.5 & 10.6	Safari	3.3%
Mac OS X 10.7 & 10.8	Chrome & Firefox	3.3%
Mac OS X 10.7 & 10.8	Safari	2.1%

Happy Eyeballs


World IPv6 Launch Anniversary: Three drivers of IPv6 growth

- Content availability
- Customers opting in to have their sites, content, and applications permanently available dual-stacked.
- 2. Availability of IPv6 from access network providers
 - IPv6 in production networks, e.g. Verizon Wireless, AT&T, and Comcast.
 - Some ISPs, Universities and Research Labs in Europe and Asia that have had IPv6 deployed
- 3. End-user device support
- Recent desktop and laptop OS and client software supports IPv6
- Many home routers / gateways start to support IPv6 recently.
- 4G LTE smart phones.

Observations from World IPv6 Launch


Akamai has a lot of customers on IPv6

- Over 700 US government hostnames
- Over 20 US government agencies
- 1/3 of top-30 World IPv6 Launch Day participants (by Alexa rank), etc.

Those customers who were dual-stacked before World IPv6 Launch show 0.3% to 1.5% of their traffic on IPv6

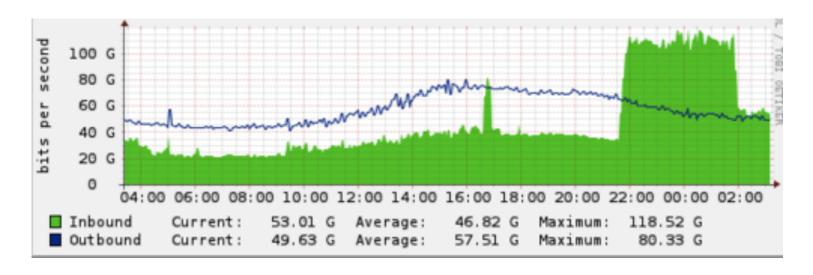
Observations from World IPv6 Launch Anniversary (Akamai

IPv6 traffic continue to growth steadily after World IPv6 Launch

- 2x customers
- 2.5x daily IPv6 requests
- 2.5x dual-stack hostnames (over 1,600 US government hostnames)
- Users upgrade their devices over the next few years
- We really running out of IPv4!

Secure the Internet

Open recursors and DNS reflection attack



Why?

- Exist to aggregate and cache queries
 - Not every computer run its own recursive resolver.
- ISPs, Large Enterprises run these
- Query through the root servers and DNS tree to resolve domains
- Cache results
- Deliver cached results to clients.

The Problem!

•Example of DNS Based reflection attack exceeding 70Gbit.

Open / Unsecured Recursors?

- DNS server set up for recursion
 - •i.e. non-authoritative
 - Will answer for zones it is not authoritative for
 - Recursive lookups
 - Will answer queries for anyone
- Some Public Services:
 Google, OpenDNS, Level 3, etc.
 - These are "special" set-ups and secured.

Say Again?

- There are hundreds of thousands of DNS Recursors.
- Many of these are not secured.
- Non secured DNS Recursors can and will be abused
- CloudFlare has seen DNS reflection attacks hit 300Gbit traffic globally.

Reflection Attack

- UDP Query
- Spoofed source
 - Using the address of the person you want to attack
 - DNS Server used to attack the victim (sourced address)
- Amplification used
 - Querying domains like ripe.net or isc.org
 - •~64 byte query (from attacker)
 - •~3233 byte reply (from unsecured DNS Server)
 - •50x amplification!
- Running an unsecured DNS server helps attackers!

Reflection Attack

Reflection Attack

- •With 50x amplification:
 - 1Gbit uplink from attacker (eg: Dedicated Servers)
 - 50Gbit attack
 - Enough to bring most services offline!
- Prevention is the best remedy.
- In recent attacks, we've seen around 80,000 open/ unsecured DNS Resolvers being used.
- At just 1Mbit each, that's 80Gbit!
 - 1mbit of traffic may not be noticed by most operators.
 - 80Gbit at target is easily noticed!

Where are the open Recursors? (Akamai

Where are they running?

Mostly on Servers.

~11,000 Servers profiled.

~7,500 BIND

~1600 unknown / undetermined

~900 Microsoft DNS Server

~500 dnsmasq

~200 ZyWALL DNS (a consumer internet router)

Preventative Measures!

- •BCP-38
 - Source Filtering.
 - You shouldn't be able to spoof addresses.
 - Needs to be done in hosting and ISP environments.
 - If the victim's IP can't be spoofed the attack will stop
 - Will also help stop other attack types
 - (eg: Spoofed Syn Flood).

Preventative Measures!

- DNS Server Maintenance
 - Secure the servers!
 - Lock down recursion to your own IP addresses
 - Disable recursion
 - If the servers only purpose is authoritative DNS, disable recursion
 - Turn them off!
 - Some Packages (eg, Plesk, cPanel) have included a recursive DNS server on by default.

Consumer Internet Routers / Modems

- Update firmware.
 - Some older firmware has security bugs
 - Allows administration from WAN (including DNS, SNMP)
- •Does the feature need to be on?
 - Make sure its set up properly

Information

•BCP-38:

http://tools.ietf.org/html/bcp38

•BIND:

http://www.team-cymru.org/Services/Resolvers/instructions.html

•Microsoft:

http://technet.microsoft.com/en-us/library/cc770432.aspx

•The Open Resolver Project:

http://openresolverproject.org/

Summary

Akamai Intelligent Platform

- Highly distributed edge servers
- Akamai mapping is different than BGP routing

IPv6 traffic is still small today, but catching up

- Dual-stack approach
- •IPv4 is really running out!

Secure the Internet

- Open recursors and DNS reflection attacks
- BCP-38 and DNS servers maintenance

Questions?

Christian Kaufmann < ck@akamai.com >

More information:

Peering: http://as20940.peeringdb.com

IPv6: http://www.akamai.com/ipv6

Acknowledgement:

Tomas Paseka < tom@cloudflare.com >