An analysis of the Internet interconnection density in IPv6 compared to IPv4

Christian Kaufmann

@DENOG5 in Darmstadt

Master Thesis - Finding a Topic

- Studying again
- -> Master of Science in Advanced Networking
- Daily life problems, relevant to a lot of people
- Inspiration from Martin Levy
- An analysis of the Internet interconnection density in IPv6 compared to IPv4

So what is the issue?

- IPv6 latency / speed is not the same as on IPv4
- Because of:
 - MTU, tunnels, hardware, etc.
 - The peering interconnection density in v6
- The amount of interconnection density seems different in v4 and V6 for various reasons:
 - V6 is still in a test phase
 - Just new peering sessions are dual stacked
 - Etc...

How to measure and proof it...

- Network latency is measured with pings and traceroutes
- Lets take a lot of them from a lot of sources in IPv4 and IPv6 to common destinations
 - RIPE ATLAS as the weapon of choice
 - 500 sources to 500 destinations
 - For v4 and v6
 - Use traceroutes instead of ping to get more info
 - Measuring RTT, IP Hops and ASN Hops
 - -500x500x2x3 = 1.500.000 Data Points

Sources - Sampling

- RIPE ATLAS Probes http://atlas.ripe.net
 - Over 4000 globally distributed probes, API, service for free
 - 500 max amount probes against one target at a time
 - Scope: global
 - Dualstacked: A and AAAA record
 - Probe ID feature secures consistency of the sample to ensure comparability of the measurements

Destinations – Sampling

- Websites to make our life easier
- Source: http://www.alexa.com
- Requirements for sampling:
 - Dualstacked
 - Nicely globally distributed
- Handpicked 500 (to have a nice 500 by 500 matrix³)
- NO CDN's or anycast deployments in order to measure the interconnection density not the website performance

Number crunching – Collecting Data

Script 1:

- Triggers the test '500 fix probes against 1 destination'
- Runs 500 times

• Script 2:

Download 1000 JSON files with the 500 traceroutes

• Script 3:

- Takes the last hop RTT of the traceroute
- Records the IP Hops of every test
- AS Lookup for every IP Hop (takes for ever☺)
- Create a CVS / Excel output

Issues on the way...

- © Huge Sample, Flood of Data
- RIPE Atlas does not like too many tests at once
- Not all probes are online all the time
- Not all websites are online all the time
- ICMP filtering seems to be more common on V6 then V4 - especially on Hosts
 - suddenly no data to report on
 - Little AS work around and some assumptions

Next.... – Analysis and Interpretation

- Crunch this 1,5 mio data sets and throw the outliers and broken ones away
- Analyze data come to some kind of conclusion
- Hypothesis: A lower number of IPv6 that IPv4 peering sessions exist as of today
- If the hypothesis will be confirmed by the data analysis: Ask the networks for the reasons for this imbalance
- Outline a solution which will help to push the number of IPv6 peering sessions
- -> Write a Thesis ©
- Report back to the community

Thanks to:

Martin Levy for the idea and inspiration

Vesna, Kaveh and Robert from the RIPE NCC

Steven Schecter for the "little" programming

Questions and Comments?

 Is this research actually helpful for the community?

 Does anyone else experience the latency issue and lack of peering as an issue?

Email: ckatminxsdotnet