
Flow Processing at BelWü

Daniel Nägele
naegele@belwue.de

DENOG14
15th November 2022

Map by Users David Liuzzo and Nordwestern, commons.wikimedia.org

THE
LÄND

2

Purposes of Flow Processing

Flow Processing at BelWü: Show and Tell15.11.2022

There are many, equally valid reasons to collect and process flows.

Some examples are:

■ Find new, impactful peerings, e.g. regarding the utilization of some interface

■ Derive flowspec rules for a customer receiving a DoS traffic

■ Show awesome graphs to customers

■ Detect devices that talk to known bad actors

■ Answer this nagging one-off question about your traffic that someone came up with

 Netflow v9 in UDP

3

Problems of Flow Processing

■ Some applications require specific “vantage points” in a network

■ Different formats and various hardware limitations

■ What reality often looks like:

● A Samplicator[1] instance, re-sending spoofed UDP datagrams containing flows

● Different specialized tools parse the same flows

Samplicator

copy

copy

copy

[1] https://github.com/sleinen/samplicator

nfdump, AS-Stats,
custom scripts, …

Flow Processing at BelWü: Show and Tell15.11.2022

https://github.com/sleinen/samplicator

How does yet another tool solve anything?

Focus on “Application Layer” flow processing:

■ Stream separation based on arbitrary criteria

■ Enrich interesting flows only, drop noise early

■ Full multi-tenant support for flow monitoring

■ Unify flows from different sources with arbitrary granularity

■ Fully reproducible yet extensible setups

4Flow Processing at BelWü: Show and Tell15.11.2022

5

flowpipeline Tooling

config.yml

- segment: input

- segment: modify
 config:
 key: value

- segment: ...

input

modify

xy

…

■ Completely configuration-defined

■ Single dependency-free binary

■ Support for any common flow format

■ Segments act on single, protobuf-encoded
flow messages and pass them along

■ Many different segments are available

■ Open Source

Flow Processing at BelWü: Show and Tell15.11.2022

Where do Flow Messages come from?

6

▪ use Goflow v2 to listen
for flows in raw format

▪ supports network devices
with sFlow, IPFIX or
Netflow v9

Flow Processing at BelWü: Show and Tell15.11.2022

Where do Flow Messages come from?

6

▪ use Goflow v2 to listen
for flows in raw format

▪ supports network devices
with sFlow, IPFIX or
Netflow v9

Flow Processing at BelWü: Show and Tell15.11.2022

▪ receive flows generated
by another flowpipeline
from a Kafka cluster

▪ flows can be pre-filtered
or pre-enriched

▪ ability to output to Kafka

Where do Flow Messages come from?

6

▪ use eBPF to dump packet
headers

▪ match packets to flows in
custom cache using
5-tuple

▪ additional information
available (packet IAT, …)

▪ working, but still WIP

▪ use Goflow v2 to listen
for flows in raw format

▪ supports network devices
with sFlow, IPFIX or
Netflow v9

Flow Processing at BelWü: Show and Tell15.11.2022

▪ receive flows generated
by another flowpipeline
from a Kafka cluster

▪ flows can be pre-filtered
or pre-enriched

▪ ability to output to Kafka

 Netflow v9 in UDP

Routing Flow Messages

7

Kafka

config.yml

- segment: goflow

- segment: addcid
 config: ...

- segment: kafkaproducer
 config: ...

flowpipeline

goflow addcid kafka-
producer

+ customer ID

Flow Processing at BelWü: Show and Tell15.11.2022

= segment

= process

Kafka

Routing Flow Messages

7

cid=1

cid=2

cid=3 Netflow v5 in UDP

 IPFIX in UDP

 Netflow v9 in UDP

config.yml

- segment: goflow

- segment: addcid
 config: ...

- segment: kafkaproducer
 config: ...

flowpipeline

goflow addcid kafka-
producer

Flow Processing at BelWü: Show and Tell15.11.2022

cid=4

Flow Enrichment and Modification

■ Built into pipeline to enable high granularity stream processing

■ Options include:

8

— prefix tagging
— BGP info
— determine remote
— geolocation
— DNS

— SNMP info
— normalization
— anonymization
— filtering by different

means

Flow Processing at BelWü: Show and Tell15.11.2022

 Netflow v9 in UDP

Enrichment with BGP segment

9

config.yml

- segment: goflow

- segment: bgp
 config: ...

- segment: kafkaproducer
 config: ...

goflow kafkaproducerbgp + BGP info

BGP session

Kafka

Flow Processing at BelWü: Show and Tell15.11.2022

Checking for RPKI (In-)valids

10

config.yml

- segment: kafkaconsumer
 config: ...

- segment: flowfilter
 config:
 filter: “rpki valid”

- segment: printflowdump

kafkaconsumer printflowdumpflowfilter

Flow Processing at BelWü: Show and Tell15.11.2022

Checking for RPKI (In-)valids

10

■ Other filters: rpki invalid, passes-through 559,
localpref >100

■ Use an additional statistical filter segment to limit to

elephant flows

Flow Processing at BelWü: Show and Tell15.11.2022

config.yml

- segment: kafkaconsumer
 config: ...

- segment: flowfilter
 config:
 filter: “rpki valid”

- segment: printflowdump

kafkaconsumer printflowdumpflowfilter

Doing something useful with those Flows...

11

config.yml

[...]

- segment: sqlite
 config:
 filename: fulldump.sqlite

- segment: prometheus
 config:
 labels: >
 SrcAS,DstAS,
 SrcIfDesc,DstIfDesc,
 SamplerAddress,FlowDirection

- segment: clickhouse
 config:
 preset: flowhouse
 ...

sqlite prometheus clickhousekafkaconsumer flowfilter

Flow Processing at BelWü: Show and Tell15.11.2022

Doing something useful with those Flows...

11

config.yml

[...]

- segment: sqlite
 config:
 filename: fulldump.sqlite

- segment: prometheus
 config:
 labels: >
 SrcAS,DstAS,
 SrcIfDesc,DstIfDesc,
 SamplerAddress,FlowDirection

- segment: clickhouse
 config:
 preset: flowhouse
 ...

■ All segments – inputs, outputs, or otherwise – chain

into each other

■ Multiple instances of one segment to export

different dimensions of flows

Flow Processing at BelWü: Show and Tell15.11.2022

sqlite prometheus clickhousekafkaconsumer flowfilter

Finding Candidates for private Peering

12Flow Processing at BelWü: Show and Tell15.11.2022

flowfilter toptalkers

Determine DoS Recipient Addresses

13

kafkaconsumer

1. Start filtering for what seems
to be causing problems:
proto udp and src port 123

2. Include fragmented datagrams:
... and port 0

printflowdump

Flow Processing at BelWü: Show and Tell15.11.2022

flowfilter

1. Limit results to SYN flooding
tcpflags syn and not
tcpflags ack and pps >9000

2. Check whether mitigations are
working:
... and not status dropped

toptalkers

Determine DoS Recipient Addresses

13

printflowdump

Flow Processing at BelWü: Show and Tell15.11.2022

 IPFIX goflow

Labeled Datasets for Researchers

14Flow Processing at BelWü: Show and Tell15.11.2022

anonymize

csv csv

mitigated.csv good.csv

config.yml

[...]

- segment: anonymize
 config:
 key: “qwertyuiop”
 fields: SrcAddr,DstAddr

- segment: branch
 if:
 - segment: flowfilter
 config:
 filter: “… and status dropped”
 then:
 - segment: csv
 config:
 filename: mitigated.csv
 else:
 - segment: csv

config:
 filename: good.csv

kafkaconsumer flowfilter

Labeled Datasets for Researchers

14Flow Processing at BelWü: Show and Tell15.11.2022

■ Possibility to integrate this

during the live DoS drilldown

example

■ Multiple export formats at the

same time

anonymize

csv csv

mitigated.csv good.csv

config.yml

[...]

- segment: anonymize
 config:
 key: “qwertyuiop”
 fields: SrcAddr,DstAddr

- segment: branch
 if:
 - segment: flowfilter
 config:
 filter: “… and status dropped”
 then:
 - segment: csv
 config:
 filename: mitigated.csv
 else:
 - segment: csv

config:
 filename: good.csv

kafkaconsumer flowfilter

Extensibility and Integration

■ Flowpipelines are extensible using custom segments, powered by

the Go plugin system

■ Allows implementation of any algorithm, data structure, or filtering

■ Pluggable into existing configurations

15Flow Processing at BelWü: Show and Tell15.11.2022

Custom Segments

1. Code in the provided template (or copy a stock segment)

2. Compile it: go build -buildmode=plugin ./custom.go

3. Use the assigned name in a config and launch with -p custom.so

16Flow Processing at BelWü: Show and Tell15.11.2022

Thank you for your attention!

17

Questions?

Daniel Nägele – naegele@belwue.de – @debugloop (on IRC & social)

Flow Processing at BelWü: Show and Tell15.11.2022

https://github.com/bwNetFlow/flowpipeline

https://github.com/bwNetFlow/flowpipeline

