## Networking Basics

a moved and

#### Wolfgang Tremmel academy@de-cix.net

自己的法律法律

Where networks meet

DECIX



#### www.de-cix.net

DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany Phone + 49 69 1730 902 0 | sales@de-cix.net | www.de-cix.net





## **Networking Basics** 01 - Networks, Packets, and Protocols

#### Wolfgang Tremmel academy@de-cix.net

**山川川川川市**村白馬

Where networks meet

DECIX



#### www.de-cix.net

DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany Phone + 49 69 1730 902 0 | sales@de-cix.net | www.de-cix.net



#### **Networking Basics DE-CIX Academy**



- 02 Ethernet
  - 02a VLANs
- 03 The Internet Protocol (IP)

  - 03b Global IP routing
- 04a UDP
- 04b TCP
- 04c ICMP



# 03a - IP addresses, prefixes, and routing

#### 05 - Unicast, Broadcast, Multicast, Anycast





Networks

- You all know and use networks
- I am not talking about the Internet
- Networks are everywhere
- Example: The road network
- It connects cities, using roads and cars





Attribution: https://commons.wikimedia.org/wiki/User:Scooter20 https://commons.wikimedia.org/wiki/File:Europe\_Completed\_Motorways\_Dec\_2012.png



- You all know and use networks
- I am not talking about the Internet
- Networks are everywhere
- Example: The railway network
- It connects railway stations, using rails and trains





Attribution: Hbf878, OpenStreetMap contributors https://commons.wikimedia.org/wiki/File:Bahnstrecken\_Deutschland\_Karte.svg



- You all know and use networks
- I am not talking about the Internet
- Networks are everywhere
- Example: The electrical grid
- It connects producers and consumers of electricity





Attribution: Wolfgang Tremmel

- You all know and use networks
- I am not talking about the Internet
- Networks are everywhere
- Example: The postal network
- It connects senders and receivers of letters and **Packets**















Packets

### **Just imagine...** Using the postal network

- Lets say you have seen this garden shed in a catalog
- And want to mail order it
- It does not fit into one package
- So the sender dismantles it





Attribution: Concord https://commons.wikimedia.org/wiki/File:HGW\_Gewaechshaeuser\_5\_2014\_017.JPG



#### **Just imagine...** Using the postal network

- So the sender dismantles it
- Packs it into several packages
- And sends them to you
- You unpack the packages
- And put the garden shed together again





Attribution: Concord https://commons.wikimedia.org/wiki/File:HGW\_Gewaechshaeuser\_5\_2014\_017.JPG



#### Using a computer network Data is sent in packets

- Computer networks (and the Internet) work in the same way
- Data is most of the time too big to sent as a whole
- So it is cut into packets by the sender
- And put together by the receiver
- Network Protocols take care that the transmission is successful











# Protocols

## What is a "Protocol"?

- If you want to communicate, you need to speak a common language
- Otherwise you will not understand each other





## What is a "Protocol"?

- If you want to communicate, you need to speak a common language
- Otherwise you will not understand each other
- The same is true for computers or other network devices





## **Protocols used** Internet

- The protocol used for the Internet is called "IP"
- IP stands for "Internet Protocol"
  - actually there are two variants of this protocol used
  - IPv4 and IPv6
  - There will be a webinar about IP!





Attribution: cable data by Greg Mahlknecht, map by Openstreetmap contributors https://commons.wikimedia.org/wiki/File:Submarine\_cable\_map\_umap.png





#### **Protocols used** Local networks

- The protocol used for your local network at home is called "Ethernet"
- But you also use IP!
- Confused?
  - Multiple protocols are used
  - This is called a Protocol Stack







# Protocol Stack OSI reference model



### The Protocol Stack **OSI** reference model

- OSI = Open Systems Interconnection
  - Project at ISO (International Organization) for Standardization)
- Defined in the 1970s and 1980s
- Intended as a vendor-independent "real" network model
  - But never took off



Still relevant as reference for teaching

| Layer | Name         |
|-------|--------------|
| 7     | Application  |
| 6     | Presentation |
| 5     | Session      |
| 4     | Transport    |
| 3     | Network      |
| 2     | Data Link    |
| 1     | Physical     |



### **OSI Model** Relevance

- It was intended as a working network
- It had some good ideas
  - Like the separation of layers
  - And layers building on each other
- While OSI was writing papers, the Internet guys were already implementing



| Layer | Name         |
|-------|--------------|
| 7     | Application  |
| 6     | Presentation |
| 5     | Session      |
| 4     | Transport    |
| 3     | Network      |
| 2     | Data Link    |
| 1     | Physical     |



## **OSI Model**

|       | Layer | Name         |
|-------|-------|--------------|
|       | 7     | Application  |
|       | 6     | Presentation |
|       | 5     | Session      |
|       | 4     | Transport    |
|       | 3     | Network      |
|       | 2     | Data Link    |
| DECIX | 1     | Physical     |

## Internet Model

| Layer | Name        |
|-------|-------------|
| 5     | Application |
| 4     | Transport   |
| 3     | Internet    |
| 2     | Link        |
| 1     | Physical    |

### **Internet Model** Also has layers

- The IP protocols do not exactly fit into the OSI model
- There is also no intention of compliance to OSI
- Internet Protocols care more about architecture and optimization than about layering
- "Running code" most important



| Layer | Name        |
|-------|-------------|
| 5     | Application |
| 4     | Transport   |
| 3     | Internet    |
| 2     | Link        |
| 1     | Physical    |



## **Internet Model Physical Layer**

- Data units are bits or symbols
- via a physical medium
- Like light pulses or electrical signals
- Examples:
  - an optical transceiver
  - an electrical Ethernet port



| Layer | Nam     |
|-------|---------|
| 5     | Applica |
| 4     | Transp  |
| 3     | Interr  |
| 2     | Link    |
| 1     | Physic  |
|       |         |



## **Internet Model** Link Layer

- Data units are called "Frames"
- Provides node-to-node data transfer
- Examples:
  - Point-to-Point Protocol (PPP)
  - Ethernet



| Layer | Nam     |
|-------|---------|
| 5     | Applica |
| 4     | Transp  |
| 3     | Interr  |
| 2     | Linl    |
| 1     | Physi   |



## **Internet Model IP / Internet Layer**

- Data units are called "Packets"
- Provides source to destination transport
- Needs addresses for hosts
- Examples:
  - IPv4
  - IPv6



| Layer | Nam     |
|-------|---------|
| 5     | Applica |
| 4     | Transp  |
| 3     | Interr  |
| 2     | Linl    |
| 1     | Physi   |



## Internet Model **Transport Layer**

- May provide flow control, reliability, congestion avoidance
- Not all of them in all protocols
- Also contains information about the next layer up
- Examples:
  - TCP (flow control, reliability, congestion) avoidance)



UDP (none of the above)

| Layer | Nam     |
|-------|---------|
| 5     | Applica |
| 4     | Transp  |
| 3     | Interr  |
| 2     | Linl    |
| 1     | Physi   |



## Internet Model **Application Layer**

- no special name for data units, just "Data"
- Contains all application protocols
- Examples:
  - SMTP, HTTP, SSH and all others



| Layer | Nan     |
|-------|---------|
| 5     | Applica |
| 4     | Trans   |
| 3     | Inter   |
| 2     | Lin     |
| 1     | Phys    |



# Conclusion



## Conclusion This is what you should remember

- Networks are everywhere
- Data is sent in **packets** via a network
- other
- The OSI model defines a network as a number of layers
- The Internet does not exactly fit into the OSI model



• A protocol is a common language devices speak so they understand each

# Networking Basics

#### 02 - Ethernet

#### Wolfgang Tremmel academy@de-cix.net

出资加利润面包的药

I INCOME AND

Where networks meet

DECIX



#### www.de-cix.net

DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany Phone + 49 69 1730 902 0 | sales@de-cix.net | www.de-cix.net





#### **Networking Basics DE-CIX Academy**



- 02 Ethernet
  - 02a VLANs
- 03 The Internet Protocol (IP)

  - 03b Global IP routing
- 04a UDP
- 04b TCP
- 04c ICMP



#### 01 - Networks, Packets, and Protocols

# 03a - IP addresses, prefixes, and routing

#### 05 - Unicast, Broadcast, Multicast, Anycast





## Ethernet

## A Modern Ethernet Device Nokia 7950

- As used by DE-CIX
- Connects 100s of devices
- using optical interfaces
- with speeds up to 400Gbps







## **Another Modern Ethernet Device** Fritzbox

- as used at home
- connects 4 devices directly
- using copper interfaces
- with speeds up to 1Gbps





Attribution: Wolfgang Tremmel

# So why does the symbolic drawing of Ethernet look like this?









#### It began in Hawaii: ALOHA-Net



#
## **ALOHA-Net** University of Hawaii, 1971

- Radio based network
- To interconnect sites
- Simple principle:
  - If you have data to send, send it
  - If you receive something while sending, stop and try again later







#### **Robert Metcalfe - Xerox PARC**



# 

#### Ethernet Xerox PARC, 1973

- Instead of radio, uses a coax cable
  - For higher bandwidth
  - And more reliability
- Inspired by ALOHAnet
- Standardized in 1980
- Ethernet II in 1982, standardized as IEEE 802.3 in 1983 DECIX



https://commons.wikimedia.org/wiki/File:Parcentrance.jpg

#### **10BASE5 10 Mbit/s Ethernet**

- 10 Mbit/s
- BASE uses baseband modulation
- 5 500m max. segment length
- Hardware:
  - 1cm thick coax cable
  - "Vampire-Tap" Transceivers





Attribution: Robert.Harker at English Wikipedia https://commons.wikimedia.org/wiki/File:10Base5transcievers.jpg





#### **10Base5 Ethernet** Remember the drawing





#### **10Base5 Ethernet** Remember the drawing





#### **10Base5 Ethernet Remember the drawing**







## **10BASE2** still only 10 Mbit/s Ethernet

- Hardware:
  - thin coax cable
  - BNC-"T"-connectors
- Up to 200m total length
- "Cheapernet"
- mid to late 1980s





https://twitter.com/the\_mutax/status/1303700688745226240



Attribution: Dmitry Nosachev https://commons.wikimedia.org/wiki/File:3Com\_3C509BC\_Ethernet\_NIC.jpg 44



## **10Base-T** still only 10 Mbit/s Ethernet

- Hardware:
  - two pairs of twisted copper wires
  - 8P8C (RJ45) plastic connector
- Since 1988
- Needs an active component (hub) or switch) to interconnect







Attribution: Dmitry Nosachev https://commons.wikimedia.org/wiki/File:3Com\_3C509BC\_Ethernet\_NIC.jpg 45



# Competing standards



#### **Token Ring** 1984 - 1990s

- Developed by IBM
- 4Mbit/s, later 16Mbit/s
- Deterministic access
- Needs central Multistation Access Unit
- More complex than Ethernet
- More expensive than Ethernet **DE CIX**

a)





#### FDDI late 1980s - 1990s

- Fiber Distributed Data Interface
- Optical network
- 100Mbit/s speed, up to 200km size
- Frame-size of 4352 bytes
- double ring topology
- made obsolete by GigabitEthernet





Attribution: Maximilian Wilhelm



Attribution: <u>Vincent van der kussen</u> at <u>nl.wikibooks</u> https://commons.wikimedia.org/wiki/File:FDDI\_Concentrator.jpeg







# **Back to Ethernet**



# Ethernet is a *broadcast* network where all devices are connected to a *shared* medium



#### Broadcast network One is sending, everybody is receiving

- All stations share one medium
- Only one station at a time can send data
- If two stations start sending at the same time, a collision occurs
  - Both stop sending, wait for a random time, then retry
  - This was one of the main criticisms (no guaranteed delivery)



#### Broadcast network One is sending, everybody is receiving

- Everybody is receiving everything
- How to avoid overload / unnecessary processing of data?
  - Each station has a unique 48-Bit address
  - Receivers address is at the beginning of each frame
  - And can be processed by the network card
  - Only frames with matching address or broadcast frames are forwarded to the CPU



#### **Ethernet** Frame Structure

| Preamble                            | SF<br>D  | Destination MAC<br>Address | Source MAC Address  | Ethertype           | Payload          | Checksu             |
|-------------------------------------|----------|----------------------------|---------------------|---------------------|------------------|---------------------|
| 10101010 10101010 10101010 10101010 | 10101011 | 48 Bits<br>6 Octets        | 48 Bits<br>6 Octets | 16 Bits<br>2 Octets | 46 - 1500 Octets | 32 Bits<br>4 Octets |





#### **Ethernet** Frame Structure



| Prea              | mble              | SF<br>D  | Destination MAC<br>Address | Source MAC Address  | Ethertype           | Payload          | Checksu             |
|-------------------|-------------------|----------|----------------------------|---------------------|---------------------|------------------|---------------------|
| 10101010 10101010 | 10101010 10101010 | 10101011 | 48 Bits<br>6 Octets        | 48 Bits<br>6 Octets | 16 Bits<br>2 Octets | 46 - 1500 Octets | 32 Bits<br>4 Octets |

- Preamble 56 bits of 10101010....
- Start of frame marker 8 bits: 10101011
- Destination MAC address
- Source MAC address
- EtherType (or length)
- Payload
- 32 bit checksum



#### **Ethernet** Addressing



• 48 Bit address - 6 octets

281 trillion possible addresses

managed by IEEE

- you can purchase blocks of addressesnotation examples:
  - 00:26:b0:d8:3d:8a
  - 0026.b0d8.3d8a
  - 00-26-b0-d8-3c-8a

| MAC Address | Ethertype | Payload          | Checksu  |
|-------------|-----------|------------------|----------|
| 48 Bits     | 16 Bits   | 46 - 1500 Octets | 32 Bits  |
| 6 Octets    | 2 Octets  |                  | 4 Octets |



#### Ethernet Addressing



- Two bits in first octect have special meaning
- one for local vs. globally unique addresses
  - unique: usually "burned" into the hardware by manufacturer
- one for unicast vs. multicast







# **Ethernet**Special Addresses



| Preamble SF D                                | Destination MAC<br>Address | Source MAC Address  | Ethertype           | Payload          | Checksu             |
|----------------------------------------------|----------------------------|---------------------|---------------------|------------------|---------------------|
| 10101010 10101010 10101010 10101010 10101011 |                            | 48 Bits<br>6 Octets | 16 Bits<br>2 Octets | 46 - 1500 Octets | 32 Bits<br>4 Octets |

#### • FF:FF:FF:FF:FF:FF

#### The *broadcast* address

• Received by all nodes



#### Ethernet Ethertype

| Preamble |          |          |          | SF<br>D  | Destination MAC<br>Address | Source |
|----------|----------|----------|----------|----------|----------------------------|--------|
| 10101010 | 10101010 | 10101010 | 10101010 | 10101011 | 48 Bits<br>6 Octets        |        |

Was once used to indicate size of payload

- Using values up 1500
- $\rightarrow$  Ethertype values start at 1536
- Some well-known values:

| 0x0800 | IPv4        |
|--------|-------------|
| 0x86dd | IPv6        |
| 0x0806 | ARP         |
| 0x8100 | VLAN Tagged |





## Ethernet Today



#### Ethernet connections In data centers

- Usually optical fibres are used
- Various types exist (single mode, multi mode)
- Speeds are 1 GBit/s, 10 GBit/s, 100 GBit/s or 400 GBit/s
- Connections are between a switch and an end device







#### **Ethernet at home** 10Base-T

- Only wire-based connections are in use
- Speeds are 100Mbit/s or 1Gbit/s
- With a switch as a center
- Wireless Ethernet WIFI is most common







### **Ethernet at home 10Base-T**

- 10Base-T (twisted pair) requires a central device
- To replace the yellow coax cable
- Early devices: a hub
  - Function: What is received on one port is broadcasted out on all other ports





Attribution: Zac67 https://commons.wikimedia.org/wiki/File:HP\_EtherTwist\_Hub8.jpg



## **Ethernet Switch** Ethernet today

- Instead of a hub, a switch is common today
- Advantage:
  - a switch learns which devices are connected to which port
  - and only sends frames on ports they are destined to
  - fallback: unknown destinations are still broadcasted on all ports





Attribution: Wolfgang Tremmel

#### But... Ethernet still....

- ...usually has a max payload size of 1500 octets
  - "jumbo frames" with 9000 octets exist, but are not commonly used
- ...uses 48-bit addresses
- ... is a broadcast medium.
  - but today switches are used and connections are point-to-point



### Network layers - Internet Model **Ethernet: Link Layer**

- Data units are called "Frames"
- Provides node-to-node data transfer
- Examples:
  - Point-to-Point Protocol (PPP)
  - Ethernet



| Layer | Nam     |
|-------|---------|
| 5     | Applica |
| 4     | Transp  |
| 3     | Interr  |
| 2     | Link    |
| 1     | Physic  |



# Conclusion



#### Please remember.... **Facts about Ethernet**

- Ethernet is a **broadcast** network
- It uses **48-Bit** addresses
  - Which are globally **unique**
- Ethernet frames have usually max. 1500 octets payload
- Today switches interconnect devices



## **Networking Basics** 02a - Ethernet + VLANs

I INCOME STREET

#### Wolfgang Tremmel academy@de-cix.net

出资加利用自己的现

Where networks meet

DECIX



#### www.de-cix.net

DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany Phone + 49 69 1730 902 0 | sales@de-cix.net | www.de-cix.net





#### **Networking Basics DE-CIX Academy**

- 02 Ethernet
  - 02a Ethernet + VLANs
- 03 The Internet Protocol (IP)

  - 03a IP addresses, prefixes, and routing 03b - Global IP routing
- 04a UDP
- U4b TCP
- 04c ICMP



#### 01 - Networks, Packets, and Protocols

#### 05 - Unicast, Broadcast, Multicast, Anycast





## Ethernet

#### A typical Ethernet In an office building or a home

# Ethernet is a *broadcast* network where all

# devices are connected to a shared medium

 End devices (computers) connected to the switches





# Now you want a second network


## Now you want a second network

- For guests
- Or your telephones
- Or for network connected "things"



#### Second network To keep separate things separate

- For example: Guest network
- Duplicate everything?
- No need it's easier
- VLANs to the rescue!







### VLANS Virtual LANs



### **Ethernet Frame**

| Preamble |          |          | е        | SF<br>D  | Destination MAC<br>Address | Source MAC    |  |  |
|----------|----------|----------|----------|----------|----------------------------|---------------|--|--|
| 10101010 | 10101010 | 10101010 | 10101010 | 10101011 | 48 Bits<br>6 Octets        | 48 B<br>6 Oct |  |  |



| Ether                                    | 'n       | et Frame                   | • Some              | well-               | know           | n valı/<br>ו        | <b>JES:</b><br>Pv4 |                     |           |
|------------------------------------------|----------|----------------------------|---------------------|---------------------|----------------|---------------------|--------------------|---------------------|-----------|
| VLAN ta                                  | ago      | jed                        |                     | 0x86d               | d              | I                   |                    | Pv6                 |           |
|                                          |          |                            |                     | 0x080               | 6              | ŀ                   | ARP                |                     |           |
|                                          |          |                            |                     | 0x810               | 0              | VLAN                | I Tagg             | ed                  |           |
|                                          |          |                            |                     |                     |                |                     |                    |                     |           |
|                                          |          |                            |                     |                     |                |                     |                    |                     |           |
|                                          |          |                            |                     |                     |                |                     |                    |                     |           |
| Preamble                                 | SF<br>D  | Destination MAC<br>Address | Source MAC Address  | Ethertype           | P              | Payload             |                    | Checksum            |           |
| 1010101010101010101010101010101          | 0101011  | 48 Bits<br>6 Octets        | 48 Bits<br>6 Octets | 16 Bits<br>2 Octets | 46-1           | 500 Octet           | ts                 | 32 Bits<br>4 Octets |           |
| Preamble                                 | SF<br>D  | Destination MAC<br>Address | Source MAC Address  | VLAN H<br>(801      | leader<br>.1Q) | Ethertype           | F                  | Payload             | Chec      |
| 1010101010101010101010101010101010101010 | 10101011 | 48 Bits<br>6 Octets        | 48 Bits<br>6 Octets | 0x8100              | VLAN           | 16 Bits<br>2 Octets | 42 -               | 1500 Octets         | 32<br>4 O |
|                                          |          |                            | 77                  |                     |                |                     |                    |                     |           |

| <b>Ethe</b><br>VLAN                      | <b>Prne</b><br>tagg | et Frame                   | • Some              | - well<br>0x0800    | know<br>0<br>d | n valu<br>I         | Jes:<br>Pv4<br>Pv6 |                     |           |
|------------------------------------------|---------------------|----------------------------|---------------------|---------------------|----------------|---------------------|--------------------|---------------------|-----------|
|                                          |                     |                            |                     | 0x080               | 6              | ŀ                   | ARP                |                     |           |
|                                          |                     |                            |                     | 0x810               | 0              | VLAN                | I Tago             | ged                 |           |
|                                          |                     |                            |                     |                     |                |                     |                    |                     |           |
|                                          |                     |                            |                     |                     |                |                     |                    |                     |           |
|                                          | SF                  | <b>Destination MAC</b>     |                     |                     |                |                     |                    |                     |           |
| Preamble                                 | D                   | Address                    | Source MAC Address  | Ethertype           |                | ayload              |                    | Checksum            |           |
| 1010101010101010101010101010101010101010 | 0101010101011       | 48 Bits<br>6 Octets        | 48 Bits<br>6 Octets | 16 Bits<br>2 Octets | 46-1           | 500 Octe            | S                  | 32 Bits<br>4 Octets |           |
| Preamble                                 | SF<br>D             | Destination MAC<br>Address | Source MAC Address  | VLAN F<br>(801.     | leader<br>1Q)  | Ethertype           |                    | Payload             | Cheo      |
| 10101010101010101010101010               | 101010101011        | 48 Bits<br>6 Octets        | 48 Bits<br>6 Octets | 0x8100              | VLAN           | 16 Bits<br>2 Octets | 42 -               | - 1500 Octets       | 32<br>4 O |
|                                          |                     |                            | 77                  |                     |                |                     |                    |                     |           |



### **Ethernet** VLAN tagged frame

| F        | Preamble                | SF<br>D  | Destination MAC<br>Address | Source MAC Address  | VLAN H<br>(801 | Header<br>.1Q) | Ethertype           | Payload          | Check         |
|----------|-------------------------|----------|----------------------------|---------------------|----------------|----------------|---------------------|------------------|---------------|
| 10101010 | 10101010101010101010101 | 00101011 | 48 Bits<br>6 Octets        | 48 Bits<br>6 Octets | 0x8100         | VLAN           | 16 Bits<br>2 Octets | 42 - 1500 Octets | 32 B<br>4 Oct |





| VLAN Header<br>(801.1Q) |          |                           |                   |  |  |  |  |  |  |
|-------------------------|----------|---------------------------|-------------------|--|--|--|--|--|--|
| ts                      | 3 Bits   | 1<br>Bit                  | 12 Bits           |  |  |  |  |  |  |
| 00                      | Priority | May<br>be<br>drop<br>ped? | VLAN ID<br>1-4094 |  |  |  |  |  |  |



### **Multiple networks** Use VLANs to separate

• You can have multiple VLANs on one physical infrastructure







### **Multiple networks** Use VLANs to separate

- You can have multiple VLANs on one physical infrastructure
- Connections can have one or multiple VLANs on them
- Connections which carry multiple VLANs are called "trunk"







### How to set it up?



#### How to set it up? Building an Ethernet with VLANs

- You remember Ethernet switches?
- You might have one in your basement
- Ethernet switches connect devices to each other
- Ethernet switches also can connect to other switches











# Ethernet Switch



# Ethernet Switch









# **Ethernet Switch**







# **Ethernet Switch**

# **Ethernet Switch**



























### And how does it work?











Guest



### **VLANs at DE-CIX**





### **VLANS at DE-CIX** How we use them

- VLANs can deliver multiple LANs on one trunked port
- Each tagged with a different VLAN ID
- Like we used to separate "Home" and "Guest" network







### **VLANs at DE-CIX** How we use them

- Customers connect to DE-CIX via Ethernet
- Standard connection is a untagged access port







### **VLANS at DE-CIX** How we use them

- Customers connect to DE-CIX via Ethernet
- Standard connection is a untagged access port
- But we can also deliver via a tagged trunk-like port







### **VLANS at DE-CIX** How we use them

- Customers connect to DE-CIX via Ethernet
- Standard connection is a untagged access port
- But we can also deliver via a tagged trunk-like port
- And on a trunk-like port we can deliver multiple services







### VLANs at DE-CIX Connect to the Cloud

- The same way we connect customers to (multiple) Cloud service providers
- At DE-CIX the VLAN ID on each end does not have to be the same!






# Conclusion



## Please remember.... **Facts about VLANs**

- Ethernet is a **broadcast** network
- VLANs set up virtual LANs on a common physical infrastructure
- VLAN IDs run from 1 4094
  - It is recommended to **not use VLAN 1** (if possible)
- DE-CIX uses VLANs for multiple service delivery on one physical port



# Networking Basics 03 - The Internet Protocol (IP)

### Wolfgang Tremmel academy@de-cix.net

目前)加加加加加加加加

Where networks meet

DECIX



### www.de-cix.net

DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany Phone + 49 69 1730 902 0 | sales@de-cix.net | www.de-cix.net



## **Networking Basics DE-CIX Academy**

- 02 Ethernet
  - 02a Ethernet + VLANs
- 03 The Internet Protocol (IP)

  - 03b Global IP routing
- 04a UDP
- 04b TCP
- 04c ICMP





## 01 - Networks, Packets, and Protocols

# 03a - IP addresses, prefixes, and routing

## 05 - Unicast, Broadcast, Multicast, Anycast





Protocol

# What is a "Protocol"?

- If you want to communicate, you need to speak a common language
- Otherwise you will not understand each other





# What is a "Protocol"?

- If you want to communicate, you need to speak a common language
- Otherwise you will not understand each other
- The same is true for computers or other network devices





# Protocol Stack Multiple protools building on each other



# **Internet Model Physical Layer**

- Light pulses and electrical signals
- Lasers and fibres
- Electrical cables



| Layer | Nam     |
|-------|---------|
| 5     | Applica |
| 4     | Transp  |
| 3     | Interr  |
| 2     | Linl    |
| 1     | Physi   |



Attribution: Cjp24 https://commons.wikimedia.org/wiki/File:12\_Optical\_fibers\_(1).jpg



# **Internet Model** Link Layer

- Data units are called "Frames"
- Provides hop-to-hop (node-to-node) data transfer
- Examples:
  - Ethernet



|   | Layer | Nam     |
|---|-------|---------|
|   | 5     | Applica |
|   | 4     | Transp  |
|   | 3     | Interr  |
|   | 2     | Lin     |
| - | 1     | Physi   |



Attribution: Wolfgang Tremmel



## **Ethernet** Frame Structure

| Preamble                           | SF<br>D    | Destination MAC<br>Address | Source MAC Address  | Ethertype           | Payload          | Checksu             |
|------------------------------------|------------|----------------------------|---------------------|---------------------|------------------|---------------------|
| 10101010 10101010 10101010 1010101 | 0 10101011 | 48 Bits<br>6 Octets        | 48 Bits<br>6 Octets | 16 Bits<br>2 Octets | 46 - 1500 Octets | 32 Bits<br>4 Octets |

# EtherTypePayload





## **Ethernet** Frame Structure

| Ethertype           | Payload          | Checksur            |
|---------------------|------------------|---------------------|
| 16 Bits<br>2 Octets | 46 - 1500 Octets | 32 Bits<br>4 Octets |





## **Encapsulation** Packets inside packets

- The payload of Ethernet is IP
- Encapsulation is like Russian dolls
- So we have an IP packet inside an Ethernet frame





Attribution: Fanghong. derivative work: Greyhood https://commons.wikimedia.org/wiki/File:Matryoshka\_transparent.png



# **Internet Model IP / Internet Layer**

- Data units are called "Packets"
- Provides source to destination (end-to-end) transport
- Needs addresses for entities
- Examples:
  - IPv4
  - IPv6



| Layer | Nam     |
|-------|---------|
| 5     | Applica |
| 4     | Transp  |
| 3     | Interr  |
| 2     | Linl    |
| 1     | Physi   |



# **IP - Version 4 (IPv4)** Header + Payload

|             | Ether |
|-------------|-------|
| IPv4 Header |       |
| 20-60 Bytes |       |



rnet Payload

**IP Payload** 

1440-1480 Bytes

## **IPv4 Header** Some parts to point out

- Starts with version and length
- Total length of packet
- Important: Time to live (TTL)
- Protocol: Type of payload
- Source / Destination address 32 bits
- Options (optional)





# **IP - Version 6 (IPv6)** Header + Payload

|                                    | Ethernet Payload |
|------------------------------------|------------------|
| IPv6 Fixed <sup>*)</sup><br>Header | IP Pa            |
| 40 Bytes                           | 1460             |



**IP** Payload

1460 Bytes



# IPv6 Header Looks less complicated!

- Starts with version and some labels
- Payload length in bytes (0-65535)
- Next Header you can chain more headers
  - replaces protocol field
- Hop Limit replaces TTL







# IP Addresses - IPv4



# **IP Addresses** IPv4

- 32 bit in length
- you might have heard of Class-1, -12 -C addresses
- there is no such thing anymore!
  - since 1993!

**DE CIX** 

- all usable IP addresses are equal
- more about this in another webinar

# 192.0.2.123

 1 1 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 1 0
 0 1 1 1
 1 0 1 1

 1 2 3 4
 5 6 7 8
 9 10 11 12
 13 14 15 16
 17 18 19 20
 21 22 23 24
 25 25 27 28
 29 30 31 32

# **IP Addresses** IPv4

- 32 bit in length
  - 4.294.967.296 possible addresses
- written as 4 decimal numbers separated by dots "."
- some addresses are reserved / not usable



# 192.0.2.123

 1 1 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 1 0
 0 1 1 1
 1 0 1 1

 1 2 3 4
 5 6 7 8
 9 10 11 12
 13 14 15 16
 17 18 19 20
 21 22 23 24
 25 25 27 28
 29 30 31 32

## IPv6!

Development started: 1994 First published: 1995

# IP Addresses - IPv6



# **IP Addresses** IPv6

- 128 bit in length possible addresses: 340282366920938463463374607431768211456
- there are lots of IPv6 addresses available
- written as hexadecimal numbers separated by colons ":"
  - double-colon "::" means fill up with zeros here
- some addresses are reserved / not usable



## 2001:db8:274f:400:226:b0ff:fed8:3d8a

### 2001:db8::1

### 2001:db8:0:0:0:0:0:1

## 2001:0db8:0000:0000:0000:0000:0000:0000:1





# Internet Protocol How did it all start?



# **History of IP** It started in the 60s

- To debunk a myth:
  - It was not invented to survive a nuclear war!
- But it was funded by DARPA a military research agency
- To connect research facilities to share (computing) resources



### ARPANET/MILNET GEOGRAPHIC MAP, APRIL 1984



https://commons.wikimedia.org/wiki/File:ARPANET\_-\_MILNT\_Diagram\_1984.jpg



# Timeline Some days in the early history of IP

- 1961 concept of packet switching network
- 1967 Plan for "ARPAnet"
- 1969 first ARPAnet node, first RFC published
- 1972 first public demonstration of ARPAnet
- 1974 TCP/IP protocol described, "Internet" first used

1983 - ARPAnet switches from NCP to TCP/IP **DE CIX** 



Attribution: Public Domain https://commons.wikimedia.org/wiki/File:ARPANET\_Info\_Brochure.pdf





## Why was IP so successful? The role of documentation

- There were other, competing protocols
  - Do you remember BITnet, DECnet? OSI?
  - Either vendor-proprietary or just theory
- IP Protocols were evolving more quickly
- Everything was open and still is
  - 1969 first Request for comments (RFC) published
  - Memos, best practices, standards published as RFC



Today: Well established and open standard for publishing

Updated by: <u>1349</u>, <u>2474</u>, <u>6864</u> RFC: 791

INTERNET STANDARD

INTERNET PROTOCOL

DARPA INTERNET PROGRAM PROTOCOL SPECIFICATION

September 1981

prepared for

Defense Advanced Research Projects Agency Information Processing Techniques Office 1400 Wilson Boulevard Arlington, Virginia 22209

by

Information Sciences Institute University of Southern California 4676 Admiralty Way Marina del Rey, California 90291

September 1981

Internet Protocol

https://commons.wikimedia.org/wiki/File:ARPANET\_-\_MILNT\_Diagram\_1984.jpg



# Conclusion



# Things you should remember The IP Protocol(s)

- Internet Protocol (IP) takes care of end-to-end communication
- IPv4 and IPv6 coexist
- IP packets consist of header and payload
- IPv4 and IPv6 headers are different
  - But both contain source- and destination addresses
  - IPv4 addresses are 32 bit long, IPv6 addresses are 128 bit long



Payload can yet be another protocol

# **Networking Basics** 03a - IP: Addresses, Prefixes and Routing

### Wolfgang Tremmel academy@de-cix.net

目前加強相關的目的

Where networks meet

DECIX

# 

### GERMAN NETWORK OPERATORS GROUP



### www.de-cix.net

DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany Phone + 49 69 1730 902 0 | sales@de-cix.net | www.de-cix.net





## **Networking Basics DE-CIX Academy**

- 02 Ethernet
  - 02a Ethernet + VLANs
- 03 The Internet Protocol (IP)
  - 03b Global IP routing
  - 03a IP addresses, prefixes, and routing
- 04a UDP
- 04b TCP
- 04c ICMP





## 01 - Networks, Packets, and Protocols

## 05 - Unicast, Broadcast, Multicast, Anycast

# **IP - the Internet Protocol**



# **Internet Model IP / Internet Layer**

- Data units are called "Packets"
- Provides source to destination (end-to-end) transport
- Needs addresses for entities



| Layer | Nam     |
|-------|---------|
| 5     | Applica |
| 4     | Transp  |
| 3     | Interr  |
| 2     | Lin     |
| 1     | Physi   |



# **IPv4 Addresses** 32 bit long

- 32 bit in length
  - 4.294.967.296 possible addresses
- written as 4 decimal numbers separated by dots "."
- some addresses are reserved / not usable



# 192.0.2.123

### **1100 0000 0000 0000 0000 0010 0111 1011**

# IPv6

Development started: 1994 First published: 1995



# **IPv6 Addresses 128 bit long**

- 128 bit in length possible addresses: 340282366920938463463374607431768211456
- there are lots of IPv6 addresses available
- written as hexadecimal numbers separated by colons ":"
  - double-colon "::" means fill up with zeros here
- some addresses are reserved / not usable

**DE CIX** 





# 2001:db8::1

## 2001:0db8:0000:0000:0000:0000:0000:0000:1

0 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 32 425 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 44 55 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f 7a 7b 7c 7d 7e 7f



# **Internet Model IP / Internet Layer**

- Data units are called "Packets"
- Needs addresses for entities
- Provides source to destination transport
  - End-to-End Transport



| Layer | Nam     |
|-------|---------|
| 5     | Applica |
| 4     | Transp  |
| 3     | Interr  |
| 2     | Lin     |
| 1     | Physi   |


## End-to-End Transport















## Intermission: Language



# Routing

## Routing

"A method of finding paths from origins to destinations in a network such as the Internet, along which information can be passed."





https://en.wiktionary.org/wiki/routing



## Routing

"A method of finding paths from origins to destinations in a network such as the Internet, along which information can be passed."

# root



https://en.wiktionary.org/wiki/routing



#### **rooting** "A hole formed by a pig when it roots in the ground"

https://en.wiktionary.org/wiki/rooting







## Routing How a *router* works

- All IP packets have a destination IP address
- Depending on the destination IP address a next hop is chosen
- For this, each router has a large lookup-table
  - This is called the *routing table*
- It contains not single IP addresses, but *Prefixes*





## **IP Prefixes**



## **IPv6 - Addresses**



2003:de:274f:400:226:b0ff:fed8:3d8a

## **IPv6 - Refresses**

## 2003:de:274f:400:206:b0ff:fed8:3d8a



3c 3d 3e 3f 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77

## 128 Bits long



## **IPv6 - Prefixes**

## 2003:de:274f:400::/64



#### Prefix-Length: 0-128

#### Host-part all zero

## **128 Bits long**



## **IPv4 - Addresses**

# 10.3.8.17







# 10.3.8.0722

**15 16 17 18 19 20 21 22** 23 24 25 25 27 28 29 30 31 32

## 32 Bits long







## **IP Addresses and Prefixes Prefix or not?**

|                    | IPv4                       | IPv6                |
|--------------------|----------------------------|---------------------|
| Length             | 32 Bit                     | 128 Bit             |
|                    | 0-32 Prefix Length         | 0-128 Prefix Length |
| Notation           | 4 Numbers, 0-255           | 8 Numbers, 0-fffff  |
| Separator          |                            |                     |
| Prefix: Host part  | all zero                   |                     |
| Address: Host part | not all zero / not all one |                     |
| Example (Prefix)   | 198.51.100.0/24            | 2001:db8:4f30::/48  |



















#### <u>To: 198.51.100.17</u>







#### <u>To: 198.51.100.17</u>







#### <u>To: 198.51.100.17</u>

Apply the netmask: /24

/24 = 24 bits in network part 11111111111111111111100000000

255.255.255.0 "bitwise logical and" with IP address

¥

198.051.100.017 255.255.255.000

198.051.100.000







#### <u>To: 198.51.100.17</u>

Apply the netmask: /24

/24 = 24 bits in network part 1111111111111111111111000000000

255.255.255.0 "bitwise logical and" with IP address

198.051.1**00.017** 255.255.25**5.000** 

=

198.051.100.000 =







- You now know how routing works
  - The router has a routing table with IP prefixes
  - The destination address is used to select a best matching prefix
  - The routing table tells the router the "next hop"

#### But how does the information get into the routing table?



## **IP Routing** But how does the information get into the routing table?

- Someone types it in
  - This is called "static routing"
  - Simple, often used, but does not scale
- Routers "talk" to each other
  - This is called "dynamic routing"
  - And the protocols used are called "routing protocols"



Examples of such protocols are **BGP**, OSPF, IS-IS, RIP, EIGRP

## Conclusion



## Conclusion We introduced a lot of new terms in this webinar

- "Routing"
  - which information can be passed." https://en.wiktionary.org/wiki/routing
- "Router"
  - A device which routes
- "IP Prefix"
  - A network address and a prefix length
- "Routing Table"



• "A method of finding paths from origins to destinations in a network such as the Internet, along

## **Networking Basics** 03b - Global IP routing

#### Wolfgang Tremmel academy@de-cix.net

出资加利用自己的现

Where networks meet

DECIX



#### www.de-cix.net

DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany Phone + 49 69 1730 902 0 | sales@de-cix.net | www.de-cix.net





## **Networking Basics DE-CIX Academy**

- 02 Ethernet
  - 02a Ethernet + VLANs
- 03 The Internet Protocol (IP)
  - 03a IP addresses, prefixes, and routing
  - 03b Global IP routing
- 04a UDP
- 04b TCP
- 04c ICMP





#### 01 - Networks, Packets, and Protocols

#### 05 - Unicast, Broadcast, Multicast, Anycast

## **IP - the Internet Protocol**



## **Internet Model IP / Internet Layer**

- Data units are called "Packets"
- Provides source to destination (end-to-end) transport
- Needs addresses for entities



| Layer | Nam     |
|-------|---------|
| 5     | Applica |
| 4     | Transp  |
| 3     | Interr  |
| 2     | Linl    |
| 1     | Physi   |



## **IPv6 - Prefixes**

## 2003:de:274f:400::/64



#### Prefix-Length: 0-128

#### Host-part all zero

## **128 Bits long**




















# How did it start?



#### **Internet in the 1990s** Also some personal history

- 2Mbit/s was a "fast connection"
- Backbone networks were 34Mbit/s
- End customers connected via ISDN (modern) or telephone modems
- Standard end customer speed was 64kBit/s



Success rate is 99 percent (999999/100000), round-trip min/avg/max

Hssi12/0 is up, line protocol is up

Hardware 15 CXBus Haal

Internet address is 174.122.225.1/30

MTU 1500 bytes, BW 34100 Kbit, DLY 200 usec, rely 255/255, 10 Encapsulation HDLC, Loopback not set, keepalive set (10 sec) Last input 00:00:02, output 00:00:00, output hang never Last clearing of "show interface" counters never Output queue 0/40, 0 drops; input queue 0/75, 0 drops 5 minute input rate 7051000 bits/sec, 622 packets/sec 5 minute output rate 7052000 bits/sec, 623 packets/sec 1449469 packets input, 2033725506 bytes, 0 no buffer Received 304 broadcasts, 0 runts, 0 giants

) parity

1 input errors, 1 CRC, 0 frame, 0 overrun, 0 ignored, 0 about 1449504 packets output, 2033727908 bytes, 0 underruns 0 output errors, 0 applique, 1 interface resets 0 output buffer failures, 0 output buffers swapped out 1 carrier transitions

gw0



### Internet in the 1990s Situation in Germany

- In the early 1990s there were three commercial ISPs in Germany
- Each had a connection to the US
- So traffic had to go via the Atlantic twice in worst case
- And was expensive





#### Internet in the 1990s The idea

- Idea: Exchange traffic directly
- Via cables?
  - Each of this early ISPs was in a different city
  - Cables / leased lines were expensive
  - Meet in the middle!









### **Internet in the 1990s** The solution

- Meet in the middle!
  - DE-CIX was born
- Direct connection between commercial providers
- To exchange traffic
  - Only their own and their own customers



This is Peering!







## Peering Noun

#### peering (plural peerings)

1. The act of one who peers; a looking around.

usually without charge or payment.

https://en.wiktionary.org/wiki/peering



2. (Internet) The act of carrying communications traffic terminating on one's own network on an equivalency basis to and from another network,

## **Peering** A typical Internet Service Provider

















#### **Peering** More direct via peering

17 27

X







シアド

 $\mathbb{X}$ 







シアド

X





#### **Peering Hierarchy Peering on multiple levels**

- Peering happens usually between equal size networks
- Peering takes place on all network levels
- The "top ones" only peer with each other
  - They are called "Tier-1 networks"









# Why Peering?



### Why Peering? Historical view

- In the early days, peering was cheaper than routing traffic via upstream providers
- Also, it kept traffic from crossing the Atlantic twice



s rate is 99 percent (99999/100000), round-trip min/avg/max = 16.

0 is up, line protocol is up are is cxBus HSSI net address is 194.122.225.1/30 500 bytes, BW 34100 Kbit, DLY 200 usec, rely 255/255, load 52/2 sulation HDLC, loopback not set, keepalive set (10 sec) input 00:00:02, output 00:00:00, output hang never clearing of "show interface" counters never relearing of "show interface" counters never aqueue 0/40, 0 drops; input queue 0/75, 0 drops te input rate 7051000 bits/sec, 622 packets/sec te output rate 7052000 bits/sec, 623 packets/sec te output rate 7052000 bits/sec, 623 packets/sec 9469 packets input, 2033725506 bytes, 0 no buffer eived 304 broadcasts, 0 runts, 0 giants 0 parity nput errors, 1 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort 9504 packets output, 2033727908 bytes, 0 underruns

utput errors, O applique, 1 interface resets utput buffer failures, O output buffers swapped out arrier transitions



## Why Peering? Peering today

- Upstream prices are down
- But peering is still important
  - Keeping local traffic local
  - Reducing latency
  - Keep your traffic under control
- At an Internet Exchange (IXP) you can peer with multiple networks via one common infrastructure





# Conclusion



### **Conclusion** Global IP routing

- Networks (Internet Service Providers) announce IP Prefixes
- IP Packets are routed to these prefixes by using their IP destination address
- Peering is exchanging traffic between similar sized networks
  - Peering in the past was mainly done to reduce cost
  - Today peering decreases latency and enhances control
  - Internet Exchanges are places where many networks meet and can peer with each other



## **Networking Basics** 04a - User Datagram Protocol (UDP)

#### Wolfgang Tremmel academy@de-cix.net

目前) 医肌脂肪的药

Where networks meet

DECIX



#### www.de-cix.net

DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany Phone + 49 69 1730 902 0 | sales@de-cix.net | www.de-cix.net



#### **Networking Basics DE-CIX Academy**

- 02 Ethernet
  - 02a Ethernet + VLANs
- 03 The Internet Protocol (IP)
  - 03a IP addresses, prefixes, and routing
  - 03b Global IP routing
- 04a UDP (User Datagram Protocol)
- 04c ICMP





#### 01 - Networks, Packets, and Protocols

#### 05 - Unicast, Broadcast, Multicast, Anycast

### **Internet Model IP / Internet Layer**

- Data units are called "Packets"
- Provides source to destination transport
  - For this we need addresses
- Examples:
  - IPv4
  - IPv6



| Layer | Nam     |
|-------|---------|
| 5     | Applica |
| 4     | Transp  |
| 3     | Interr  |
| 2     | Linl    |
| 1     | Physi   |



### Internet Model **Transport Layer**

- May provide flow control, reliability, congestion avoidance
- Examples:
  - TCP (flow control, reliability, congestion avoidance)
  - UDP (none of the above)
- Also may contain information about the next layer up



| Layer | Nam     |
|-------|---------|
| 5     | Applica |
| 4     | Transp  |
| 3     | Interr  |
| 2     | Linl    |
| 1     | Physi   |



#### **Encapsulation** Packets inside packets

- Encapsulation is like Russian dolls
- IP Packets have a payload
- This payload is usually UDP or TCP (there are others as well)
- So we have an UDP packet inside an IP packet





Attribution: Fanghong. derivative work: Greyhood https://commons.wikimedia.org/wiki/File:Matryoshka\_transparent.png



### **IPv4 Header** "Legacy" IP

- Starts with version and length
- Total length of packet
- Important: Time to live (TTL)
- Protocol: Type of payload
  - TCP = 6, UDP = 17
- Source / Destination address 32 bits

Options (optional) **DE CIX** 



### **IPv6 Header** Looks simpler, yes?

- Starts with version and some labels
- Payload length in bytes (0-65535
- Next Header you can chain more headers
  - replaces protocol field, same values
- Hop Limit replaces TTL





| be | ls |
|----|----|
| 5) |    |
| or | Α  |

| Byte | 0               | 1                                        | 2              | 3       |  |  |
|------|-----------------|------------------------------------------|----------------|---------|--|--|
| 0    | Versio          | Version = 6 / Traffic Class / Flow Label |                |         |  |  |
| 4    | Payloac<br>in b | I Length<br>ytes                         | Next<br>Header | Hop Lin |  |  |
| 8    |                 | Source IPv6 Address                      |                |         |  |  |
| 12   |                 |                                          |                |         |  |  |
| 16   |                 |                                          |                |         |  |  |
| 20   |                 |                                          |                |         |  |  |
| 24   |                 |                                          |                |         |  |  |
| 28   |                 | Destination IDv6 Address                 |                |         |  |  |
| 32   |                 | Destination IPvo Address                 |                |         |  |  |
| 36   |                 |                                          |                |         |  |  |



#### Next header: Transport layer header TCP, UDP, and more

- We start with the "easiest" protocol
- UDP
  - User Datagram Protocol
  - Protocol ID is 17
  - Introduced in 1980
- Lets have a look at the header





## **UDP Header**

- 4 fields, each of them 16 bits
- Length: UDP header + UDP payload
- Checksum
  - Optional for IPv4, required for IPv6
  - IP header + UDP header are covered
- Source Port
  - Optional, zero if not used
- Destination Port number



required



# Port number



## Port number









#### **Port numbers** In reality...

- Of course we have not a building
- We have a computer system
- But we have port numbers
- Behind each port sits a piece of software
  - On some systems this software is called a "daemon"





### **UDP - Connectionless communication** Why is it called connectionless?

- The sender does not know if and when the packet has been received
- There may be an answer, but there also may be not
- If there is an answer, the sender knows the packet got through
- If there is no answer
  - Either the packet did not get through
  - Or the answer did not get through



#### **UDP packet processing** Security issues ahead!

- A UDP packet is received by a system
- It is delivered to the software matching the destination port number
- If a response has to be sent, it is sent to back to sender
  - Using the source IP as destination of the response
  - The source-port becomes the destination port of the response
- Can you see a security problem in that?






## UDP - what it is used for



### **NTP - Network Time Protocol** Synchronizing clocks over the Internet

- <u>NTP</u> is a protocol to synchronize computer clocks using the Internet
- Systems send and receive UDP packets on port 123
  - Packets contain a 32-Bit number for seconds and a 32-bit number for fractional seconds
  - Epoch (start) is 1st of January, 1900
  - Rollover will be on 7th of February, 2036





### **DNS - Domain Name Service** The phonebook of the Internet

- DNS translates names (like "<u>www.de-cix.net</u>") to IP addresses
- DNS is so complex and widely used, it deserves a webinar on its own
- Roughly explained
  - A system sends a name to a name server via UDP
  - The name server sends an UDP packet back containing the IP address where the name is hosted







### **DHCP - Dynamic Host Configuration Protocol** This is how your PC gets an IP address at home

- If you connect a computer to a network it needs an IP address
- DHCP takes care it gets one, and more

  - Your computer sends out a DHCP request via UDP broadcast to port 67 A DHCP server replies via UDP and assigns
    - an IP address
    - the default gateway



a nameserver (where to send DNS requests to)



# UDP and network security



#### **UDP normal communication** Request and answer







#### **UDP as attack tool** Faked request and misdirected answer













### A real world example Memcached

- <u>memcached</u> is a software to cache objects in RAM for fast retrieval
- Attack method:
  - tell an unsecured installation of *memcached* to store an object
  - that object
  - this gives you an <u>amplification factor</u> of up to 51000





#### send an UDP packet to that installation with a **faked source IP** to retrieve



## A real world example NTP - Network Time Protocol (2010)

- NTP is a protocol to synchronize computer clocks using the Internet
- The "monlist" command, sent via UDP to an NTP server returns the list of the last 600 hosts who have connected to that server
  - If sent from a faked IP source address, this list is sent via UDP to the faked source
- Solution: "monlist" command was removed from the software





## Conclusion



### **Conclusion** UDP - User Datagram Protocol

- UDP is a connectionless protocol on the transport layer
- UDP packets are also called "datagrams"
  - the UDP header contains a source and a destination port number
- If misconfigured, UDP services can be used for network attacks
- More and more services which relied on UDP are moved to TCP
  - But TCP is the topic of the next episode



| Layer | Nam     |
|-------|---------|
| 5     | Applica |
| 4     | Transp  |
| 3     | Interr  |
| 2     | Linl    |
| 1     | Physi   |

