
How our Cloudy Mindsets
Approached Physical Routers
SNMP was not an option
Steffen Gebert
DENOG12, 09.11.2020

After the latest project, EMnify became a 99% only cloud
company. To meet growing scalability and reliability
requirements of the interconnection between our AWS-
based deployments and multiple carriers, BGP peerings
had to be moved out of AWS. Therefore, a pair of Juniper
routers were put into place. For a company fully relying on
cloud services so far, this alien technology resulted in
several challenges.

We want to share, how we solved the integration puzzle of
this physical equipment into our existing workflows and
tools. The use of CI/CD systems for applying changes,
AWS CloudWatch, Prometheus and Grafana for
monitoring as well as the reluctance to run applications
that require a lot of shepherding lead our research to find
the right glue - the glue between these pieces of iron and
our cloud infrastructure.

Being used to CI/CD processes backed by automated tests,
we wanted to adapt these practices here as well. As a
result, configuration changes are rolled out by an
automated pipeline using Ansible. Efforts for automated
testing were made, where we failed. We explain why and
what we did instead as well as what we envision for the
future.

As every other part of our system, we want its monitoring
data accessible via Grafana.
With the help of pmacct and fluentbit, we can treat IPFIX
flow records as they were logs. With the help of jtimon,
Prometheus stores the routers’ metrics as we are used to
do, in doubt tickled out through few custom YANG models.

In summary, the integration worked very well, while we still
have several learnings and pain points to share.

Abstract

Thanks to our Sponsors!

Cloudy Mindset?

5 years ago

All rights reserved | Confidential
10.
11.
20

3-10 years ago

6@StGebert

Since 2017

7@StGebert

Is This a Better World?

Focus on Business Value

Prefer Managed Services

And Suddenly… Hardware?

Agenda

Context
Deploy-

ment
Moni-
toring

EMnify’s IoT Connectivity Platform

13@StGebert

Cellular connectivity
in 500+ networks in

185 countries

RESTful APIs Pay as you go
pricing

SMS/USSD to REST
bridge

Secure connectivity
via VPN and AWS

natively

Implemented using
own virtualized

mobile core network

Supporting Global IoT Deployments

Home-routing of roaming SIM data
prevents distributed architecture

EMnify’s mobile core network is
deployed in multiple AWS regions

– keeping data local
@StGebert 14

GRX/IPX Network (GPRS Roaming Exchange)

15

Internet

Telco world
GRX/IPX

@StGebert

Our scale[throughput] bores you

We’re critical to our customers’ success

Increased demands vs. AWS as
“General Purpose Cloud”

Running BGP on AWS?

We had to move logic out of AWS

We could not find a fitting
managed service

We had to get hardware

We chose boring technology

Greenfield project

• Juniper MX204

• Colocation rack space

• Fiber links towards
2 carriers
AWS

• Out-of-band management
access via OPNsense

25@StGebert

Setup – Twice per region

Integration Points

26

Metrics

Syslog

Flows records

Alerts

Config

@StGebert

27

Design Principles

80/20 rule
aka

MVP

Don’t get out
of our comfort

zone

Don’t setup
anythat that

requires lot of
handholding

@StGebert

Deployment

A human shall not SSH into
something

M Y I N N E R S E L F

juniper_junos Ansible Modules

@StGebert 30

Configuration Deployment

Render
Config

•Single config file
•Parametrized using variables

Commit

•Upload using juniper_junos_config
•Load override mode
•Issue (to be) confirmed commit

Test •Ping tests

Confirm
•Confirm commit

@StGebert 31

Ansible Playbook - Code Example

@StGebert 32

- name: install generated configuration file onto device
juniper_junos_config:
provider: "{{ juniper_connection_settings }}"
src: "{{ conf_file }}"
load: override
comment: "playbook execution, commit confirmed"
confirmed: 3 # wait X minutes until rollback
diff: yes
ignore_warning: yes

register: config_results
notify: confirm previous commit

• Separate AWS account

• Isolated connectivity

33@StGebert

Config Pipeline

AWS CodePipeline

AWS CodeBuild

And where are the tests?

In a Perfect World..

35

• 2-star review could have been mine :D

• Latest version: 18.4R1

• Takes ~30min to be ready

• AWS does not support VLANs!

• Only for manual testing

• Maybe eve-ng or GNS3 could help?

@StGebert

• Start virtualized topology in network emulator

• Apply configuration pipeline

• Emulate BGP peers

• Execute end-to-end connectivity tests

• Emulate link failures

• Verify connectivity

• AWS: run on bare metal host (b/c CPU VMX)

On My Bucket List

36@StGebert

Routine Operations (Runbooks)

38@StGebert

Firmware Update - Checks
/workspace/prod # ansible-playbook upgrade_check.yaml -u steffen.gebert
...
TASK [Validate result] *****************
[mx204-am3] Chassis Alarms

Expect:
No alarms currently active
Actual:
No alarms currently active
...
[mx204-am3] Core Dumps

Expect:
/var/crash/*core*: No such file or directory
Actual:
/var/crash/*core*: No such file or directory

[mx204-am3] ⚠ Proceed? ⚠
:
Press 'C' to continue the play or 'A' to abort

39@StGebert

Firmware Update - Draining
- name: Drain traffic
juniper_junos_config:
provider: "{{ juniper_connection_settings }}"
load: 'set'
lines:
- 'activate policy-options policy-statement OUT-OF-SERVICE-SWITCH term as-path-prepend'

comment: 'Drain traffic to router for upgrade'

- name: Traffic drained
pause:
prompt: |
[{{item}}] Traffic is draining.
Verify that traffic is completely drained on the following dashboard before proceeding
[{{item}}] ⚠ Proceed with the JunOS upgrade ⚠?

loop: "{{ ansible_play_hosts }}"

40@StGebert

Firmware Update – Execute!
- name: Install Junos OS package
juniper_junos_software:
provider:
host: "{{ ansible_host }}"
timeout: 3600

remote_package: "{{ junos_vm_file }}"
validate: True
cleanfs: False
vmhost: True
reboot: True

ignore_errors: yes # rpc times out when upgrading, despite the provider timeout settings
register: output

Deploy a file
¯_(ツ)_/¯

Challenges
Max length

of file
copy URLs

Feedback for
invalid confg

Amount of
boilerplate

code

Monitoring

Syslogs

•Who logged into the router?

•What’s happening in the router?

44@StGebert

Syslog Implementation

rsyslog

Amazon CloudWatch
Logs

1 containers
to run

Flow Records

Flow Records

Network-to-
Network
Interface

(GTP traffic)

~20k parallel
flows

1 flow =>
1 log line?!

46@StGebert

Amazon CloudWatch
Logs

•How much traffic per AS?

•Did we receive any signaling from XYZ and did we really respond?

47@StGebert

Flow Records Collection

IPFIX

2 containers
to run

BMP
FireLens

pmacct / nfacct

@StGebert 48

libpcap

NFLOG

NetFlow

IPFIX
B

G
P

B
M

P

R
PK

I

tag

filter

aggregate

split

RDBMS

NoSQL

MQ

NetFlow

Memory

File

stdout

protocol

Enrichment

@StGebert 49

host_ip src_ip dst_ip src_port dst_port src_asn dst_asn src_ifindex dst_ifindex …

direction

organization

hostname carrier

drop
BGP & BFD

Lua Magic

@StGebert 50

-- Sets GTP-c or GTP-u protocol depending on port numbers
function setGTPProtocol(tag, timestamp, record)

local code = 0
local gtp_ports = {

["GTP-c"] = 2123,
["GTP-u"] = 2152,
["GTP'"] = 3386,

}
local new_record = record
for protocol, port in pairs(gtp_ports)
do

if record["source.port"] == port or record["destination.port"] == port then
new_record["network.application"] = "GTP"
new_record["network.protocol"] = protocol
code = 2

end
end
return code, timestamp, new_record

51@StGebert

52@StGebert

Inbound traffic by AS query

@StGebert 53

fields concat(source.as.organization.name, ', ’,
source.as.organization.country, ' (AS ', source.as.number, ')') as org

| filter @logStream = "flows"
| filter host.name like /^$host$/
| filter concat(source.as.number, ' ', source.as.organization.name, ' ',

source.as.organization.country,' ',source.as.organization.tadig) like /$operator/
OR concat(destination.as.number, ' ', destination.as.organization.name, ' ’,

destination.as.organization.country, ' ', destination.as.organization.tadig)
like /$operator/

| filter network.peer.destination.as.organization.name like /^$carrier$/
| filter network.direction = "inbound"
| filter network.protocol like /$protocol/
| filter 10000
| stats sum(network.bytes)/60*8 as `` by org,bin($time_interval)
| sort `` desc

CloudWatch
Read Limits

Challenges

CloudWatch
Write Limits

pmacct
config

“creativity”

Metrics

Metrics Demand

56

Temperature, light
levels, etc.

State, throughput,
errors, etc.

State, prefixes
received/accepted/installed

Hard-
ware

Inter-
faces

BGP

@StGebert

Prometheus

• High cardinality, high frequency metrics collection

57@StGebert

Metrics Implementation

Junos Telemetry
(JTI)

1 container
to run

JTIMON

58@StGebert

Metrics Examples

JTI Sensor
availability

Challenges

JTIMON
config file

duplication

JTIMON ENUM
support PKI setup

Alerting

Prometheus

• Prometheus-integrated alerting

61@StGebert

Alerting Implementation

Junos Telemetry
(JTI) JTIMON

Alertmanager

• Integrated hardware into an otherwise fully cloud-based environment
• Avoid new processes
• Avoid new (user-facing) tooling

• Found tooling to bridge gaps to “what we’re comfortable with”
• 1-2 containers running existing open source tooling
• No guarantuee that this scales to 10s of devices

• Please contact me, if you want details (configs etc.) or have suggestions!

62@StGebert

Summary & Conclusion

Need a
Lockdown
Project?
Go to emnify.com/devs

