
Introduction Intro Monitoring Complexity Services Observability Outro

On Observability

Richard Hartmann,
RichiH@{freenode,OFTC,IRCnet},
richih@{debian,fosdem,richih}.org,

@TwitchiH

2018-11-21

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

‘whoami‘

Richard ”RichiH” Hartmann
Swiss army chainsaw at SpaceNet

Leading the build of one of the most modern datacenters in Europe
...and always looking for nice co-workers in the Munich area

FOSDEM, DebConf, DENOGx, PromCon staff
Author of https://github.com/RichiH/vcsh
Debian Developer
Prometheus team member
OpenMetrics founder

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability

https://github.com/RichiH/vcsh


Introduction Intro Monitoring Complexity Services Observability Outro

Definitions

Buzzword

buzzword, n:
A useful concept which has been picked up by everyone without understanding its

deeper meaning and used so often that it’s devoid of its original context and
definition.

May revert to usefulness in the same or different meaning, or die off.

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Definitions

Cargo culting

cargo culting, v:
Villagers on remote Pacific islands observed U.S. soldiers building marker fires

and runways during WWII; this made planes come and bring gifts from the
heavens. Cults emerged which built bonfires and runways in the hopes of getting

more gifts.
Also see: copy & paste

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Definitions

Monitoring

monitoring, n:
Old buzzword.

Too often: focus is put on collecting, persisting, and alerting on just any data, as
long as its data.

It might also be garbage.
Also see: data lake

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Definitions

Observability

observability, n:
Function of a system with which humans and machines can observe, understand,

and act on the state of said system.

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Definitions

Thanks!

Thanks for listening!

Questions?

Email me if you want a job in Munich.

See slide footer for contact info.

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Outlook

Learnings

Baseline of monitoring
Types of monitoring data and when to use them
Types of complexity
Containing complexity
Service, contracts, SL{I,O,A}, etc
Services upon services
Bringing it all together

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Baseline of monitoring

Recap

Monitoring is the bedrock of everything (in IT).

Hope is not a strategy.

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Baseline of monitoring

Claim

Uninformed, or cargo culted, monitoring equals hope.
Also see: ISO 9001 & 27001

So we need informed decisions, made on a factual basis.

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Baseline of monitoring

50:50

Broadly speaking, there are metrics and events

Metrics: Changes over time

Events: Specific points in time

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Metrics, events, and when to use them

Metrics

Numerical data
Counters: Things going up monotonically, e.g. total transmitted bytes
Gauges: Things going up and down, e.g. temperatures
Bool/ENUM: Special case of gauges indicating a changing state or a singular
event
Histograms and percentiles: Things going into buckets or being in a specific
percentage band, e.g. latency

Counters and histograms lose, or compress, data (in the common case)
Easy to handle at scale
You can do math on them!

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Metrics, events, and when to use them

Logs

Most likely text items
Usually with inlined metadata
Scale linearly with service load
Can be summarized into counters, histograms, and quantiles

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Metrics, events, and when to use them

Traces

Execution path along the, hopefully annotated, code
Impacts code runtime, aka expensive
Can hide race conditions and other timing-dependent issues
Usually disabled or sampled

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Metrics, events, and when to use them

Dumps

Thrown when programs abort abnormally
Execution path along the code
Not annotated unless compiler artefacts of the exact same program are
available
You want to avoid them, but you also want to collect them when they happen

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Metrics, events, and when to use them

When to use what

Metrics should usually be the first point of entry
..for alerts
..for dashboards
..for data exploration

Logs are usually the second step
..for establishing order of events
..for detailed information
..for access control, due diligence, etc

Traces and dumps are useful to understand why individual system
components behave in a certain way

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

It may be rocket science

Types of complexity

Fake complexity, aka shitty design

System-inherent complexity

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

It may be rocket science

Handling complexity

You can reduce fake complexity

You can contain inherent complexity

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

It may be rocket science

Containing complexity

You need to compartmentalize complexity to make it manageable

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Baseline of services

What’s a service?

A service is anything a different entity relies upon

This entity might be another team, a customer, or yourself

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Baseline of services

Handover

Service delineations have many names: interface, API, contract

I like to think of all of them as contracts. Why?

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Pop culture references

Tetris

Services build on top of each other

(Network * x + machine/container/kubelet * y + daemon/microservice * z) * n =
HTTP service

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Pop culture references

Jenga

This tower can topple if the underlying building blocks are removed without due
consideration.

”Contract” implies a firm commitment, which is why I like this term.

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Pop culture references

Chinese whispers

There’s another common term for contract: layer.

Imagine if someone simply changed how IP works.

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Pop culture references

Trolling

For example, imagine someone would claim that IP addresses have 128 instead of
32 bits all of sudden...

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Pop culture references

Cake

So we agree that layering makes sense, but why do we agree?

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Pop culture references

It’s complicated

Because we internalized that it’s good practice to contain and compartmentalize
system-inherent complexity.

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Pop culture references

Spectre, Meltdown, etc

A CPU is highly complex, but we are happy to trust their hidden complexity
because there’s a well-defined service boundary.

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Recap

Relevance

Customers care about their services being up, not about individual service
components

Discern between primary (service-relevant) and secondary (informational /
debugging) SLIs; alert only on the former

Anything currently or imminently impacting customer service must be alerted upon.

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Recap

Containment

Service delineations are the perfect boundaries for containing complexity

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Bringing it all together

What’s all this, now?

Monitoring tells you whether the system works.
Observability lets you ask why it’s not working.

-
Baron Schwartz

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Bringing it all together

Observability is not something you ever achieve, you can always improve on it.

As such there’s not the One True Thing to do, it’s about establishing the correct
mindset.

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Bringing it all together

BCPs

Every outage gets a blame-free(!) post-mortem; and this includes a review of
all relevant SLI & SLO

..are they still useful?

..would you have been quicker if you would have had different/more data?

..should you retire some data collection?
Link services together in your dashboards, etc

Make jumping into underlying services and their data as fluent as possible
Surface important insights from underlying services as context

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Bringing it all together

BCPs

Avoid relying only on blackbox data where possible; you need to get into your
systems and extract fine-grained and meaningful data

Best case, this means instrumenting your code to extract metrics and traces
Every time you are even considering to place a DEBUG statement into a
codepath, put a counter
In the networking space, this often means requiring better data from your
vendors.
Explain what and why you need it, then force them via conditional POs, etc.

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Bringing it all together

BCPs

You (hopefully) know your services best, so create debugging stories in
advance

What are common and/or critical paths while getting visibility into issues?
Which parts of these paths can you automate (more)?
Does it makes sense to introduce new (internal) service boundaries and/or
contracts to create new compartments?

ELI5: Find an non-expert and explain your services to them

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Bringing it all together

BCPs

Collecting 10x or 100x more data means you have more substance to work
with
Avoid data lakes, attach meaningful metadata as early as possible
Your tools must be able to handle this load
Even more important, they must make handling the amounts of data
manageable, and support automation

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability



Introduction Intro Monitoring Complexity Services Observability Outro

Thanks!

Thanks for listening!

Questions?

Email me if you want a job in Munich.

See slide footer for contact info.

Richard Hartmann, RichiH@{freenode,OFTC,IRCnet}, richih@{debian,fosdem,richih}.org, @TwitchiH

On Observability


