
Network Core Protection
Best Practices

Thorsten Dahm
td@google.com

DENOG 1
05. November 2009

Agenda

Protect your own infrastructure

Overview of the current problems

 Methods to protect the own infrastructure:
traditional methods
protect the CPU
network hardening

Not (!) part of this presentation: protect traffic which travels
trough your network from customer to customer

Traditional Network design

all core routers are protected individually
all routers are reachable from outside the own AS

Network hardening

keep unwanted IP packets away from your core

The three security characteristics

availability

reliability

integrity

-> our goal is to keep and maintain this three characteristics

Availability: protect the infrastructure

security is a key factor in networks

Internet changed from a trusted to an untrusted network

do not trust any IP packet!

develop trust by filters and policies

fundamental: protect your own infrastructure

must be part of every network design

secure and stable network = basis of business operations

An adequate approach

The presented features are useful, but have to fit into your
own network design!
Should never break your connectivity
Do not implement all features at the same time
Better: implement one feature that you understand
Most important feature according to your assessment
First roll out in the real network only in a controlled manner
and in a limited part of the network
Write down the lessons you learned
Create documentation
It's not a problem if it's taking one year and more!

Distinction of attacks

Internal:
human error
internal attacker

External:

worms
packet floods (what we looking at for now)
vulnerabilities
penetration
route hijacking
attacking services like DNS

Possible attacks

control plane (ARP, BGP, OSPF)

management plane (telnet, SSH, SNMP, NTP)

filling up the queue between the interface and the RP

overload of the RP input buffer

overload the RP itself

plus a few more

Protecting routers - Best Practices

Many guidelines from cymru, NSA, ...

Most of the proposals are out of the scope of this talk

For every practice exists a reason (e. g. SSH version 2)

Sometimes there is an interesting story behind this best
practices :-)

Traditional methods of protecting
routers

turn off all services you don't need, like CDP
turn off all features you don't need, like proxy ARP or ip redirects
VTY ACLs
SNMP community ACLs
turn off SNMP rw (or use v3)
AAA
logging
uRPF
prefix filter
MD5 for routing protocols
...

Control Plane Policing (CoPP)

Cisco-version of a "real" loopback-interface

not only permit/deny, also rate-limits available

exists on all Cisco platforms

same syntax everywhere

flexible, can also deal with ARP etc.

be careful with the decision what you want to deny or rate
limit

CoPP: define ACLs (example)

Critical - absolutely necessary (e. g. OSPF Hello)
Important - daily work (e. g. SSH)
Normal - needed, not essential needed
Undesirable - “evil” oder “undesirable”

Catch-All - all other IP traffic towards the RP which didn't get
identified yet
Default - all other non-IP traffic towards the RP which didn't
get identified yet

CoPP - a configuration example

access-list 121 permit tcp host 10.1.1.2 eq bgp host 10.1.1.1 gt 1024
access-list 121 permit tcp host 10.1.1.2 gt 1024 host 10.1.1.1 eq bgp

class-map match-any CoPP-critical
match access-group 121

policy-map CoPP
 class CoPP-critical

police 5000000 2500 4470 conform-action transmit exceed-action
transmit

Router(config)# control-plane
Router(config-cp)# service-policy [input | output] <policy-map-name>

Monitoring CoPP

show access-list

show log (if the log keyword is used in the ACL)

show policy-map control-plane

SNMP Queries

Network hardening

In case of an DoS attack it is already too late if the packet
reaches the router

CoPP helps in this case, but doesn't solve the problem
better: deny the undesirable packets at the network
border

One method to sove this problem:

Infrastructure ACLs

Comparison before - after

Infrastructure ACLs

prerequisite: filter traffic to your own core routers

create a list of protocols you need with a source outside
your own AS and which have to reach your core routers
(e. g. eBGP, IPSec, ...)

the (preferably aggregated) address block of your core
routers are the IP range you want to protect

summarization keeps your ACLs small
bad summarization makes your ACL less manageable

Infrastructure ACLs

allow only the protocols and connections you really need

should also do the anti-spoofing filtering:

RFC3330 defines IPv4 addresses for special use
deny your own IPs as a source from outside
deny RFC1918 addresses
deny multicast source addresses (224/4)

have to allow transit

IP traffic which has to be forwarded trough the core routers
must be permitted with "permit ip any any" in the end

apply incoming at the ingress interface

Infrastructure ACLs

but ... RFC1918 addresses don't get routed in the Internet
anyway, or do they?

Router#sh ip access <name>
 100 deny ip 10.0.0.0 0.255.255.255 any (12 matches)
 120 deny ip 169.254.0.0 0.0.255.255 any (15 matches)
 130 deny ip 172.16.0.0 0.15.255.255 any (753 matches)
 140 deny ip 192.168.0.0 0.0.255.255 any (24 matches)

http://10.0.0.0/
http://0.255.255.255/
http://169.254.0.0/
http://0.0.255.255/
http://172.16.0.0/
http://0.15.255.255/
http://192.168.0.0/
http://0.0.255.255/

Implementation step by step

usually, you need just a few protocols

even less of them will have a source IP from outside your
own AS

the necessary access will be definied by an ACL

configure and test this ACL gradually

Define what is allowed
every IP packet to the backbone must be classified

NetFlow can help

"log" keyword (be careful)

investigate unexpected events with care

No protocol / IP packet must be allowed that you can't
explain!

An example

! Deny our internal space as a source of external packets
 access-list 101 deny ip core_CIDR_block any
! Deny src addresses of 0.0.0.0 and 127/8
 access-list 101 deny ip host 0.0.0.0 any
 access-list 101 deny ip 127.0.0.0 0.255.255.255 any
! Deny RFC1918 space from entering our AS
 access-list 101 deny ip 10.0.0.0 0.255.255.255 any
 access-list 101 deny ip 172.16.0.0 0.0.15.255 any
 access-list 101 deny ip 192.168.0.0 0.0.255.255 any
!Permit eBGP from outside
 access-list 101 permit tcp host peerA host peerB eq 179
 access-list 101 permit tcp host peerA eq 179 host peerB
! Deny all other access to infrastructure
 access-list 101 deny ip any core_CIDR_block
! Permit all transit traffic
 access-list 101 permit ip any any

Infrastructure ACLs - summarization

Infrastructure ACLs are very useful if designed well and
used everywhere

being used since years from many ISP

address summary is essential for an successful deployment

Infrastructure ACLs have some weaknesses as well:

can collide with other (customer-) ACL for example

The End :-)

Questions?
td@google.com

